【每日力扣】46. 全排列与47. 全排列 II

文章讲述了如何使用回溯算法解决全排列问题,包括两种情况:一种是不含重复数字的全排列,另一种是允许重复数字但要求不重复排列。通过递归和剪枝策略避免重复,展示了详细的Java代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

🔥 个人主页: 黑洞晓威
😀你不必等到非常厉害,才敢开始,你需要开始,才会变的非常厉害。

46. 全排列

给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。

示例 1:

输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

示例 2:

输入:nums = [0,1]
输出:[[0,1],[1,0]]

示例 3:

输入:nums = [1]
输出:[[1]]

解题思路

  1. 回溯算法: 回溯算法是一种递归算法,用于解决在给定约束条件下搜索所有可能解的问题。
  2. 路径和选择列表: 对于全排列问题,路径表示当前已选择的数字序列,选择列表表示还未被选择的数字。
  3. 递归过程: 每次递归选择一个未被选择的数字加入路径中,并继续递归选择剩余的数字,直到路径长度等于给定数组长度。
  4. 回溯过程: 在递归的过程中,需要撤销选择并回溯到上一层,继续选择其他未被选择的数字。
import java.util.*;

class Solution {
    List<List<Integer>> result = new ArrayList<>();

    public List<List<Integer>> permute(int[] nums) {
        List<Integer> path = new ArrayList<>();
        backtrack(nums, path, new boolean[nums.length]);
        return result;
    }

    private void backtrack(int[] nums, List<Integer> path, boolean[] used) {
        if (path.size() == nums.length) {
            result.add(new ArrayList<>(path));
            return;
        }

        for (int i = 0; i < nums.length; i++) {
            if (!used[i]) {
                path.add(nums[i]);
                used[i] = true;
                backtrack(nums, path, used);
                path.remove(path.size() - 1);
                used[i] = false;
            }
        }
    }
}

47. 全排列 II

给定一个可包含重复数字的序列 nums按任意顺序 返回所有不重复的全排列。

示例 1:

输入:nums = [1,1,2]
输出:
[[1,1,2],
 [1,2,1],
 [2,1,1]]

示例 2:

输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

这个问题可以使用回溯算法来解决。回溯算法是一种深度优先搜索的算法,通过递归地枚举所有可能的情况,并在每一步中进行剪枝,从而避免重复计算。

思路

  1. 对数组 nums 进行排序,这样可以方便后续处理重复元素。
  2. 使用一个辅助函数 backtrack 进行回溯处理。
  3. backtrack 函数中,使用一个布尔数组 used 来记录每个元素是否被使用过。
  4. 在回溯的过程中,避免重复元素的方法是在选择元素时,如果当前元素和前一个元素相同且前一个元素未被使用过,则跳过当前元素。
  5. 如果路径 path 的长度等于数组长度,说明找到了一个全排列,将其添加到结果中。
  6. 回溯结束后,返回结果。

代码

import java.util.*;

class Solution {
    List<List<Integer>> result = new ArrayList<>();

    public List<List<Integer>> permuteUnique(int[] nums) {
        Arrays.sort(nums); // 先对数组排序,方便后续处理重复元素
        backtrack(nums, new ArrayList<>(), new boolean[nums.length]);
        return result;
    }

    private void backtrack(int[] nums, List<Integer> path, boolean[] used) {
        if (path.size() == nums.length) {
            result.add(new ArrayList<>(path));
            return;
        }

        for (int i = 0; i < nums.length; i++) {
            // 避免重复元素
            if (used[i] || (i > 0 && nums[i] == nums[i - 1] && !used[i - 1])) {
                continue;
            }

            path.add(nums[i]);
            used[i] = true;
            backtrack(nums, path, used);
            path.remove(path.size() - 1);
            used[i] = false;
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黑洞晓威

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值