🔥 个人主页: 黑洞晓威
😀你不必等到非常厉害,才敢开始,你需要开始,才会变的非常厉害。
46. 全排列
给定一个不含重复数字的数组 nums
,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。
示例 1:
输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
示例 2:
输入:nums = [0,1]
输出:[[0,1],[1,0]]
示例 3:
输入:nums = [1]
输出:[[1]]
解题思路
- 回溯算法: 回溯算法是一种递归算法,用于解决在给定约束条件下搜索所有可能解的问题。
- 路径和选择列表: 对于全排列问题,路径表示当前已选择的数字序列,选择列表表示还未被选择的数字。
- 递归过程: 每次递归选择一个未被选择的数字加入路径中,并继续递归选择剩余的数字,直到路径长度等于给定数组长度。
- 回溯过程: 在递归的过程中,需要撤销选择并回溯到上一层,继续选择其他未被选择的数字。
import java.util.*;
class Solution {
List<List<Integer>> result = new ArrayList<>();
public List<List<Integer>> permute(int[] nums) {
List<Integer> path = new ArrayList<>();
backtrack(nums, path, new boolean[nums.length]);
return result;
}
private void backtrack(int[] nums, List<Integer> path, boolean[] used) {
if (path.size() == nums.length) {
result.add(new ArrayList<>(path));
return;
}
for (int i = 0; i < nums.length; i++) {
if (!used[i]) {
path.add(nums[i]);
used[i] = true;
backtrack(nums, path, used);
path.remove(path.size() - 1);
used[i] = false;
}
}
}
}
47. 全排列 II
给定一个可包含重复数字的序列 nums
,按任意顺序 返回所有不重复的全排列。
示例 1:
输入:nums = [1,1,2]
输出:
[[1,1,2],
[1,2,1],
[2,1,1]]
示例 2:
输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
这个问题可以使用回溯算法来解决。回溯算法是一种深度优先搜索的算法,通过递归地枚举所有可能的情况,并在每一步中进行剪枝,从而避免重复计算。
思路
- 对数组
nums
进行排序,这样可以方便后续处理重复元素。 - 使用一个辅助函数
backtrack
进行回溯处理。 - 在
backtrack
函数中,使用一个布尔数组used
来记录每个元素是否被使用过。 - 在回溯的过程中,避免重复元素的方法是在选择元素时,如果当前元素和前一个元素相同且前一个元素未被使用过,则跳过当前元素。
- 如果路径
path
的长度等于数组长度,说明找到了一个全排列,将其添加到结果中。 - 回溯结束后,返回结果。
代码
import java.util.*;
class Solution {
List<List<Integer>> result = new ArrayList<>();
public List<List<Integer>> permuteUnique(int[] nums) {
Arrays.sort(nums); // 先对数组排序,方便后续处理重复元素
backtrack(nums, new ArrayList<>(), new boolean[nums.length]);
return result;
}
private void backtrack(int[] nums, List<Integer> path, boolean[] used) {
if (path.size() == nums.length) {
result.add(new ArrayList<>(path));
return;
}
for (int i = 0; i < nums.length; i++) {
// 避免重复元素
if (used[i] || (i > 0 && nums[i] == nums[i - 1] && !used[i - 1])) {
continue;
}
path.add(nums[i]);
used[i] = true;
backtrack(nums, path, used);
path.remove(path.size() - 1);
used[i] = false;
}
}
}