该系统通过YOLOv8进行高效的目标检测与分割,结合DeepSORT算法完成目标的实时跟踪,并利用GPU加速技术提升处理速度。系统支持模块化设计,可导入其他权重文件以适应不同场景需求,同时提供自定义配置选项,如显示标签和保存结果等。
1. 引言
随着城市交通压力的增加,智能交通系统(ITS)成为缓解交通拥堵、提高道路安全的重要手段。车辆检测与测速作为ITS的核心模块之一,对提升交通管理效率具有重要意义。YOLOv8和DeepSORT作为当前目标检测与跟踪领域的领先算法,其结合使用能够显著提升系统的实时性和准确性。本文提出了一种基于YOLOv8、DeepSORT和PyQt5的车速检测系统,旨在为交通管理和智能监控提供高效、可靠的解决方案。
2. 系统架构
2.1 YOLOv8算法介绍
通过单次前向传播即可预测图像中的目标位置和类别。其特点包括:
- 实时性能:YOLOv8专为实时应用设计,能够在视频流中快速检测目标。
- 高准确性:利用最新的卷积神经网络架构,在各种环境下保持高准确率。
- 易于集成:YOLOv8的输出可以直接用于后续的跟踪算法,无需复杂的预处理