Spark和Flink都是大数据处理框架,它们的设计思想有一些不同之处。以下是对它们设计思想的简要对比:
-
数据模型和计算模型:
- Spark:Spark使用弹性分布式数据集(RDD)作为其核心数据结构。RDD是只读的、不可变的、可以并行处理的不可变数据集合。Spark的计算模型是基于RDD的转换和动作,通过将一系列的转换操作串联起来形成一个有向无环图(DAG),然后按照任务调度器分配的资源进行计算。
- Flink:Flink的核心数据结构是数据流和事件流。Flink的数据流模型是基于流处理和批处理的统一计算模型,既可以进行流处理也可以进行批处理。Flink的事件流可以处理无界和有界数据,并提供了基于事件时间的处理方式。
-
数据处理方式:
- Spark:Spark主要基于批量处理,设计理念是尽可能减少延迟,快速读取数据、处理数据。对于小批量数据的处理,Spark采用了宽窄依赖的分区策略,对于迭代算法等场景可以有效地利用内存资源。
- Flink:Flink支持流处理和批处理,并可以在同一Flink程序中无缝地集成流处理和批处理。Flink的流处理是基于事件时间的,提供了对乱序事件和延迟事件的精确处理能力。
-
容错性:
- Spark:Spark使用RDD的依赖关系来检测故障,通过RDD的宽窄依赖关系来重新计算丢失的数据。这种基于RDD的容错机制使得Spark在故障恢复时具有较好的性能。
- Flink:Flink提供了基于事件时间和水印的容错机制,可以处理乱序事件和延迟事件,并保证事件流的精确一致性。Flink的容错机制具有较低的恢复延迟。 <