[YOLOv7/YOLOv5系列算法改进NO.9]锚框K-Means算法改进K-Means++

本文介绍了如何使用K-Means++算法改进YOLOv5的锚框聚类,以提高目标检测的精度和效果。相比于K-Means,K-Means++能更稳定地选择初始聚类中心,避免局部最优解。通过调整YOLOv5的锚框,实验表明在某些数据集上能获得轻微的性能提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前   言:作为当前先进的深度学习目标检测算法YOLOv5,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进方法。此后的系列文章,将重点对YOLOv5的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或者搞工程项目的朋友需要达到更好的效果提供自己的微薄帮助和参考。

解决问题:YOLOv5默认采用K-Means算法聚类COCO数据集生成的锚框,并采用遗传算法在训练过程中调整锚框,但是K-Means在聚类时,从其算法的原理可知,K-Means正式聚类之前首先需要完成的就是初始化k个簇中心。同时,也正是因为这个原因,使得K-Means聚类算法存在着一个巨大的缺陷——收敛情况严重依赖于簇中心的初始化状况,采用K-Means++可以有效缓解这一问题,从而一定程度上能够提高检测精度和效果。

完整代码和教程百度云盘如下:

链接:https://pan.baidu.com/s/16t3SjHh5faLpLMNGzTFxUQ 
提取码:关注后私信

原   理:

k-means++是k-means聚类算法的一种改进版本,主要用于数据聚类。它的原理如下:

  1. 首先从数据集中随机选取一个点作为第一个
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能算法研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值