第6章 计算机的运算方法
一、无符号数和有符号数
(一)无符号数
无符号数,即没有符号的数。因此,在机器字长相同时,无符号数与有符号数所对应的数值范围是不同的。
(二)有符号数
1.机器数与真值
用“0”表示“正”,用“1”表示“负”,并且规定将它放在有效数字的前面,即组成了有符号数。
2.原码表示法
符号位为0表示正数,符号位为1表示负数,数值位即真值的绝对值。
(1)整数原码的定义为:
(2)小数原码的定义为:
优点:原码表示简单明了,并易于和真值转换;
缺点:机器运算时比较繁琐;原码中的”零”有两种表示形式。
3.补码表示法
(1)补数
①一个负数可用它的正补数来代替,而这个正补数可以用模加上负数本身求得;
②一个正数和一个负数互为补数时,它们绝对值之和即为模数;
③正数的补数即该正数本身。
(2)补码的定义
①整数补码的定义为:
②小数补码的定义为:
4.反码表示法
反码的定义如下:
5.移码表示法
移码的定义如下:
其实移码就是在真值上加一个常数2n。在数轴上移码所表示的范围恰好对应于真值在数轴上的范围向轴的正方向移动2n个单元,如图6-1所示,由此而得移码之称。移码表示中零也是惟一的。
图6-1 移码在数轴上的表示
6.表6-1列出了真值、补码和移码的对应关系。
表6-1 真值、补码和移码对照表
二、数的定点表示和浮点表示
(一)定点表示
小数点固定在某一位置的数为定点数,有以下两种格式: