经矩形窗截断的信号频谱泄露现象研究-附Matlab代码

本文通过对比两个不同长度样本的频谱图,分析了频谱泄露现象及其原因,并提出了使用整周期采样和窗函数来减少泄漏的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

✳️ 一、频谱泄露现象

有一个余弦信号,信号频率30Hz,信号为x(t)=cos(2π×30t),采样频率fs=128Hz,样本长度分别取N=128和N=100,在FFT后作谱图并比较谱图中的差别。

结果如下:

在这里插入图片描述
上述两信号中,中心频率f0=30,采样频率fs=128,唯一差别仅是FFT的长。在N=128的谱图上只在30Hz处有一条谱线,其他频点的幅值都为0;

而在N=100的谱图上有明显的泄漏现象,谱线用红实线表示。图中用虚线和红圈点表示了30Hz的频率点,而最大两根谱线在30Hz两侧。

即出现了当N=128时FFT后没有泄漏,而当N=100时FFT发生了泄漏。

✳️ 二、原因分析以及解决方法

设信号是频率为f0,当取信号为整周期采样时,信号的频率f0=l△f,l=k,f0将与某一条谱线相重合,即第k条谱线频率为f0。整周期采样后得到的幅值谱图如下图所示:

在这里插入图片描述

整周期采样时幅值图谱

在整周期采样后,一样存在着泄漏的可能性,但由于信号频率f0与第k条谱线重合,k±i(i为整数值)的任意谱线正好落在零点上,所以在谱图中就没有显示泄漏现象。

当取信号为非整周期采样时,信号的频率f0不与FFT后某一条谱线重合,而是落在两条谱线的中间,例如落在第k和k+1条谱线之间,其中第k条谱线是局部极大值,如下图所示。

在这里插入图片描述

非整周期采样时幅值图谱

在非整周期采样时,一样存在着泄漏的可能性,由于信号频率f0在两条谱线之间,第k条谱线虽是局部的最大值,但不与f0相重合,则k±i(i为整数值)的任意谱线都是非零值,所以在谱图中存在泄漏现象

为了防止泄漏,对于单频信号可以调整采样频率使之构成整周期采样(例如在电力监测设备中,有的会用锁相技术跟踪信号频率以调整采样频率),但大多数实际信号处理中的信号不是单频(或单频+谐波),而是多频率的,所以泄漏是难免的。在有泄漏的情形中只能想方设法减小泄漏的影响,比如利用窗函数。虽然上述已在截断的讨论中加了矩形窗函数,但矩形窗函数的泄漏是最大的,还有其他窗函数能更好地减少泄漏。

✳️ 三、Matlab程序获取与验证

上述matlab代码链接如下:

经矩形窗截断的信号频谱泄露现象研究

可开展针对性验证实验,请私信博主。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研中心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值