【更新至2024年】2009-2024年上市公司esg评级评分数据(含细分项)(年度+季度).rar
2009-2024年上市公司华证esg评级、评分数据(含细分项)(年度+季度)
1、时间:年度:2009-2024年 季度:2009-2025.1
2、来源:整理自wind
3、指标:证券代码、时间、证券简称、综合评级、综合赋值、综合得分、E评级、E得分、S评级、S得分、G评级、G得分、证监会行业新、同花顺行业新、申万行业
4、范围:上市公司
5、样本量:5.2W+
【更新至2024年】2009-2024年上市公司华证esg评级、评分年度数据(含细分项).xlsx
2009-2024年上市公司华证esg评级、评分年度数据(含细分项)
1、时间:2009-2024年
2、来源:整理自wind
3、指标:证券代码、时间、证券简称、综合评级、综合赋值、综合得分、E评级、E得分、S评级、S得分、G评级、G得分、证监会行业新、同花顺行业新、申万行业
4、范围:上市公司
5、样本量:5.2W+
【更新至2024年】2005-2024年各省居民人均可支配收入数据(含城镇居民人均可支配收入、农村居民人均可支配收入)(无缺失)
2005-2024年各省居民人均可支配收入数据(含城镇居民人均可支配收入、农村居民人均可支配收入)(无缺失)
1、时间:全体居民人均可支配收入(2005-2024年)、城镇居民人均可支配收入(1987-2024年)、农村居民人均可支配收入(1997-2024年)
2、来源:国家统计J、统计NJ
3、指标:全体居民人均可支配收入、城镇居民人均可支配收入、农村居民人均可支配收入
4、范围:31省
【更新至2024年】1996-2024年各省农村居民人均消费支出数据(无缺失)
1996-2024年各省农村居民人均消费支出数据(无缺失)
1、时间:1996-2024年
2、来源:国家统计J、统计NJ
3、指标:农村居民人均消费支出
4、范围:31省
5、缺失情况:无缺失
【更新至2024年】1999-2024年各省城镇居民人均消费支出数据(无缺失)
1999-2024年各省城镇居民人均消费支出数据(无缺失)
1、时间:1999-2024年
2、来源:国家统计J、统计NJ
3、指标:城镇居民人均消费支出
4、范围:31省
5、缺失情况:无缺失
【更新至2024年】2005-2024年各省居民人均消费支出数据(无缺失)
2005-2024年各省居民人均消费支出数据(无缺失)
1、时间:2005-202年
2、来源:国家统计J、统计NJ
3、指标:全体居民人均消费支出
4、范围:31省
5、缺失情况:无缺失
1987-2023年各省耕地面积数据(无缺失)
1987-2023年各省耕地面积数据
1、时间:1987-2023年
2、来源:Z国统计NJ、各省NJ、环境统计NJ
3、范围:全国及31省
4、指标:耕地面积(公顷)
5、缺失情况:无缺失(2018年全国、吉林、黑龙江、上海、江苏、福建、江西、海南、贵州采用线性插值法填补)
【更新至2025年】2009-2025年第一季度上市公司华证esg评级、评分季度数据(含细分项)
2009-2025年第一季度上市公司华证esg评级、评分季度数据(含细分项)
1、时间:2009-2025年1季度
2、来源:整理自wind
3、指标:证券代码、年份、证券简称、评级年份、评级月份、评级日期、综合评级、综合得分、E评级、E得分、S评级、S得分、G评级、G得分、证监会行业新、同花顺行业新、申万行业
4、范围:上市公司
5、样本量:20.9W+
2015-2023年各省农村居民平均每百户年末移动电话拥有量数据
2015-2023年各省农村居民平均每百户年末移动电话拥有量数据
1、时间:20105-2023年
2、来源:国家统计J、统计NJ
3、指标:农村居民平均每百户年末移动电话拥有量
4、范围:31省
5、缺失情况:无缺失
2000-2023年全国及各省农村恩格尔系数数据(含原始数据+计算过程+结果)(无缺失)
2000-2023年全国及各省农村恩格尔系数数据(含原始数据+计算过程+结果)(无缺失)
1、时间:2000-2023年
2、来源:统计年鉴、各省年鉴
3、指标:农村居民人均消费支出、农村居民食品消费支出、恩格尔系数
4、范围:全国及31省
5、计算说明:恩格尔系数=食品消费支出/消费支出
6、指标解释:恩格尔系数(Engel's coefficient)是一个用于衡量家庭或个人在食品支出占总消费支出比例的经济指标。它由德国经济学家恩格尔(Ernst Engel)于19世纪提出,通常用来反映一个国家或地区居民的生活水平和经济状况。
1997-2024年各省农村居民人均可支配收入数据(无缺失)
1997-2024年各省农村居民人均可支配收入数据(无缺失)
1、时间:1997-2024年
2、来源:国家统计J、统计NJ
3、范围:31省
4、指标:农村居民人均可支配收入
5、缺失情况:无缺失
1992-2024年各省地区生产总值指数数据(无缺失)
1992-2024年各省地区生产总值指数数据(无缺失)
1、时间:1992-2024年
2、来源:国家统计J、统计NJ
3、指标:地区生产总值指数
4、范围:31省
5、指标解释:地区生产总值指数指反映一定时期内地区生产总值变动趋势和程度的相对数,该指标是以上一年为基期计算的指数。按不变价格计算。
省级数字经济变量:2013-2023年各省电子商务销售额数据(无缺失)
省级数字经济变量:2013-2023年各省电子商务销售额数据(无缺失)
1、时间:2013-2023年
2、来源:国家统计J、各省NJ
3、指标:电子商务销售额
4、范围:31省
2003-2024年高铁数据合集高铁开通时间、高铁线路信息、高铁列车信息、飞机航线信息数据(四份数据合集).rar
2003-2024年高铁数据高铁开通时间、高铁线路信息、高铁列车信息、飞机航线信息数据(四份数据合集)
1、时间:2003-2024年
2、来源:高铁航线数据库(Chinese High-speed Rail and Airline Database,CRAD)
3、指标:
1.高铁站开通时间:高铁站名称、开通时间、所在省份、所在城市、所属线路名称、以及相关备注
2.高铁线路信息:高铁线路名称、起点名、终点名、开通时间、线路长度(km)、设计速度(km/h)、沿途主要车站
3.高铁列车信息:列车车次、出发站、出发站所属地级市、出发站所属省份、出发站类型、到达站、到达站所属地级市、到达站所属省份、到达站类型、车型、开车时间、到站时间、运行时间、里程
4.飞机航线信息:起点城市、起点城市所属地级市、起点城市所属省份、起点机场、终点城市、终点城市所属地级市、终点城市所属省份、终点机场、航空公司、更新日期、航班、出发时间、到达时间、准点率、班次_周一、班次_周二、班次_周三、班次_周四、班次_周五、班次_周六、班次_周日
1987-2024年各省城镇居民人均可支配收入数据(无缺失)
1987-2024年各省城镇居民人均可支配收入数据(无缺失)
1、时间:1987-2024年
2、来源:国家统计J、统计NJ
3、指标:城镇居民人均可支配收入
4、范围:31省
5、缺失情况:无缺失
2005-2024年各省全体居民人均可支配收入数据(无缺失)
2005-2024年各省全体居民人均可支配收入数据/居民人均可支配收入数据(无缺失)
1、时间:2005-2024年
2、来源:国家统计J、统计NJ
3、指标:全体居民人均可支配收入
4、范围:31省
5、缺失情况:无缺失
6、指标解释:
2003-2024年高铁站开通时间数据
2003-2024年高铁站开通时间数据
1、时间:2003-2024年
2、来源:整理自高铁航线数据库(Chinese High-speed Rail and Airline Database,CRAD)
3、指标:高铁站名称、开通时间、所在省份、所在城市、所属线路名称、以及相关备注
4、指标说明:
[高铁站名称]-高铁站名称
[开通时间]-高铁站所属的高铁线路开通时间
[所在省份]-高铁站所在省份
[所在城市]-高铁站所在城市名称
[所属线路名称]-高铁站所属的高铁线路名称
[备注]-该高铁站只办理货运或具体停靠时间与开通时间不同等情况说明
2003-2024年高铁线路信息数据
2003-2024年高铁线路信息数据
1、时间:2003-2024年
2、来源:高铁航线数据库(Chinese High-speed Rail and Airline Database,CRAD)
3、指标:高铁线路名称、起点名、终点名、开通时间、线路长度(km)、设计速度(km/h)、沿途主要车站
4、指标说明:
[高铁线路名称]-高铁线路名称
[起点名]-高铁线路的起点站名
[终点名]-高铁线路的终点站名
[开通时间]-高铁线路的开通时间
[线路长度(km)]-高铁线路的总线路长度,单位:km
[设计速度(km/h)]-该高铁线路列车能保持安全顺适行使的最大行使速度,单位:km/h
[沿途主要车站]-高铁线路全程沿途停靠的主要车站
1992-2024年各省产业结构升级、产业结构高级化数据(含原始数据+计算过程+结果)
1992-2024年各省产业结构升级、产业结构高级化数据(含原始数据+计算过程+结果)
1、时间:1992-2024年
2、来源:国家统计J、统计NJ
3、指标:国内生产总值、第一产业增加值、第二产业增加值、第三产业增加值、第一产业比重、第二产业比重、第三产业比重、产业结构升级、产业结构高级化
4、范围:全国及31省
5、计算说明:产业结构高级化=第三产业增加值/第二产业增加值
产业结构升级=第一产业比重*1+第二产业比重*2+第三产业比重*3
6、缺失情况:无缺失
7、包含原始数据、计算过程、计算结果
2003-2024年高铁列车信息数据
2003-2024年高铁列车信息数据
1、数据:2003-2024年
2、来源:高铁航线数据库(Chinese High-speed Rail and Airline Database,CRAD)
3、指标:列车车次、出发站、出发站所属地级市、出发站所属省份、出发站类型、到达站、到达站所属地级市、到达站所属省份、到达站类型、车型、开车时间、到站时间、运行时间、里程
4、指标说明:
[列车车次]-发车列车的车次编号
[出发站]-列车的出发站
[出发站所属地级市]-列车的出发站所属地级市
[出发站所属省份]-列车的出发站所属省份
[出发站类型]-列车出发站类型,如:始发车、过路车
[到达站]-列车的到达站
[到达站所属地级市]-列车的到达站所属地级市
[到达站所属省份]-列车的到达站所属省份
[到达站类型]-列车到达站类型,如:始发车、过路车
[车型]-列车的车型分类,如:动车、高铁、特快、普快等
[更新日期]-高铁列车信息更新的日期
[开车时间]-列车从该站台开车出发的时间
[到站时间]-列车到达终点站的时间
[运行时间]-列车在出发站与到达站之间的运行时间
[里程]-列车在出发站与到达站之间的运行里程数,单位:km
【更新至2024年】2001-2024年上市公司常用控制变量数据(600+指标)(含原始数据+处理代码+结果)
【更新至2024年】2001-2024年上市公司常用控制变量数据(600+指标)
1、时间:2001-2024年
2、来源:上市公司年报、csmar、wind
3、范围:A股上市公司
4、指标:证券代码、stkcd、证券简称、统计截止日期、报表类型、是否发生差错更正、差错更正披露日期、货币资金、其中客户资金存款、结算备付金、其中客户备付金、现金及存放中央银行款项、存放同业款项、贵金属、拆出资金净额、交易性金融资产、衍生金融资产、短期投资净额、应收票据净额、应收账款净额、应收款项融资、预付款项净额、应收保费净额、应收分保账款净额、应收代位追偿款净额、应收分保合同准备金净额、其中应收分保未到期责任准备金净额、其中应收分保未决赔款准备金净额、其中应收分保寿险责任准备金净额、其中应收分保长期健康险责任准备金净额、应收利息净额、应收股利净额、其他应收款净额、买入返售金融资产净额、存货净额、其中数据资源存货、合同资产、持有待售资产、一年内到期的非流动资产、存出保证金、其他流动资产、流动资产合计、保户质押贷款净额、定期存款、发放贷款及垫款净额、债权投资、以摊余成本计量的金融资产、可供出售金融资产净额、其他债权投资、以公允价值计量且其变动计入其他综合收益的债务工具投资、持有至到期投资净额、长期应收款净额、长期股权投资净额、其他权益工具投资、以公允价值计量且其变动计入其他综合收益的权益工具投资、以公允价值计量且其变动计入其他综合收益的金融资产、其他非流动金融资产、长期债权投资净额、长期投资净额、存出资本保证金、独立账户资产、投资性房地产净额、固定资产净额、在建工程净额、工程物资、固定资产清理、生产性生物资产净额、油气资产净额、使用权资产、无形资产净额、其中交易席位费、其中数据资源无形资产、开发支出、其中数据资源开发支出、商誉净额、长期待摊费用、递延所得税资产、代理业务资产、其他非流动资产
2000-2024年各地级市绿色专利获得数据
2000-2024年各地级市绿色专利获得数据
1、时间:2000-2024年
2、指标:省份名称、地市名称、会计年度、当年获得的绿色发明数量、绿色发明占地区年度获得的专利总数百分比、当年获得的绿色实用新型数量、绿色实用新型占地区年度获得的实用新型总数百分比
3、来源:国家知识产权J
4、范围:地级市
2007-2023年cnrds 上市公司ESG评分数据.xlsx
2007-2023年cnrds 上市公司ESG评分数据
1、时间:2007-2023年
2、来源:cnrds
3、指标:股票代码、公司简称、会计年度、ESG得分、ESG排名、E得分、E排名、S得分、S排名、G得分、G排名
4、范围:A股上司公司
5、数据说明:
[E得分]-环境主题得分
[E排名]-环境主题排名
[S得分]-社会主题得分
[S排名]-社会主题排名
[G得分]-治理主题得分
[G排名]-治理主题排名
【更新至2024年】2001-2024年上市公司数字化转型数据(含原始数据+计算代码+结果)
2001-2024年上市公司数字化转型数据(含原始数据+计算代码+结果)
1、时间:2001-2024年
2、来源:上市公司年B
3、指标:年份、证券代码、人工智能技术、大数据技术、云计算技术、区块链技术、数字技术运用、数字化词频总计、DCG、AI、BD、CC、DT、ADT
4、范围:上市公司
5、测算方式:通过 Python 爬虫功能归集整理了上海交易所、深圳交易所全部 A 股上市企业的年度报告,并通过 Java PDFbox 库提取所有文本内容,并以此作为数据池供后续的特征词筛选。基于 Python 对上市企业年报文本提取形成的数据池,根据下图 的特征词进行搜索、匹配和词频计数,进而分类归集关键技术方向的词频并形成最终加总词频,从而构建企业数字化转型的指标体系。具体的大家可以看一下参考文献,与参考文献做法完全一致
6、关键词:人工智能技术:人工智能、商业智能、图像理解、投资决策辅助系统、智能数据分析、智能机器人、机器学习、深度学习、语义搜索、生物识别技术、人脸识别、语音识别、身份验证、自动驾驶、自然语言处理
大数据技术:大数据、数据挖掘、文本挖掘、数据可视化、异构数据、征信、增强现实、混合现实、虚拟现实
云计算技术:云计算、流计算、图计算、内存计算、多方安全计算、类脑计算、绿色计算、认知计算、融合架构、亿级并发、EB级存储、物联网、信息物理系统
区块链技术:区块链、数字货币、分布式计算、差分隐私技术、智能金融合约
数字技术运用:移动互联网、工业互联网、移动互联、互联网医疗、电子商务、移动支付、第三方支付、NFC支付、智能能源、B2B、B2C、C2B、C2C、O2O、网联、智能穿戴、智慧农业、智能交通、智能医疗、智能客服、智能家居、智能投顾、智能文旅、智能环保、智能电网、智能营销、数字营销、无人零售、互联网金融、数字金融、Fintech、金融科技、量化金融、开放银行
【更新至2024年】1990-2024年上市公司财务指标/应计利润数据(30+指标)
1990-2024年上市公司财务指标/应计利润数据(30+指标))
1、时间:1990-2024年
2、指标:证券代码、统计截止日期、资产总额、流动资产合计、货币资金、短期投资、应收账款、一年内到期的长期债券投资、固定资产原值、无形资产和其他长期资产、负债总额、流动负债合计、短期借款、应付股利、一年内到期的长期负债、递延税款贷项、股东权益合计、股本、主营业务收入、财务费用、主营业务利润、营业利润、投资收益、利润总额、净利润、固定资产净盘亏额、清理固定资产净损失、固定资产折旧额、资产负债率、总资产报酬率A、总资产报酬率B、总资产报酬率C、净资产收益率A、净资产收益率B、净资产收益率C、总应计利润
3、来源:深圳交易所、上海交易所
4、范围:A股上市公司
5、样本量:7.6W+
【更新至2024年】2001-2024年上市公司供应链数据合集(供应链地理距离、供应链集中度、供应链网络关系、前五大供应商采购信息、前五大客户销售信息)(五份数据)
2001-2024年上市公司供应链数据合集(供应链地理距离、供应链集中度、供应链网络关系、前五大供应商采购信息、前五大客户销售信息)(五份数据)
1、时间:2001-2024年
2、来源:上市公司年B、临时公告
3、指标:
2001-2024年上市公司供应链地理距离指标数据:股票代码、统计截止日期、报表类型、业务关系、排名、客户/供应商公司ID、企业名称、是否上市公司、公司股票代码、地理临近标识、空间距离(千米)、与客户/供应商距离(千米)、是否同省份企业、是否同城市企业
2001-2024年上市公司供应链集中度指标数据:股票代码、统计截止日期、报表类型、第一大客户销售额(元)、前五大客户销售额(元)、第一大供应商采购额(元)、前五大供应商采购额(元)、营业总收入(元)、第一大客户销售额占总销售额比率(%)、第一大供应商采购额占总采购额比率(%)、客户集中度(%)、供应商集中度(%)、客户集中度赫芬达尔指数(%)、供应商集中度赫芬达尔指数(%)、供应链集中度(%)
2001-2024年上市公司供应链网络关系指标数据:股票代码、统计截止日期、报表类型、一级供应链业务关系、一级供应链股票代码、二级供应链业务关系、二级供应链股票代码
2001-2024年上市公司前五大供应商采购信息数据:股票代码、统计截止日期、报表类型、排名、供应商公司ID、供应商名称、是否上市公司、公司股票代码、是否上市公司关联公司、关联上市公司股票代码、供应商采购额(元)、供应商采购额占比(%)、币种
2001-2024年上市公司前五大客户销售信息数据:股票代码、统计截止日期、报表类型、排名、客户公司ID、客户名称、是否上市公司、公司股票代码、是否上市公司关联公司、关联上市公司股票代码、客户销售额(元)、客户销售额占比(%)、币种
【更新至2024年】2001-2024年上市公司数字化转型年报词频统计(吴非、赵宸宇、甄红线三种方法 300+词频)
【更新至2024年】2001-2024年上市公司数字化转型年报词频统计(吴非、赵宸宇、甄红线三种方法 300+词频)
1、时间:2001-2024年
2、来源:上市公司年B
3、参考文献:企业数字化转型与资本市场表现——来自股票流动性的经验证据(吴非)
数字化转型如何影响企业全要素生产率(赵宸宇)
知识产权行政保护与企业数字化转型(甄红线)
4、方法说明:(1)参考吴非老师的做法,对人工智能技术、大数据技术、云计算技术、区块链技术、数字技术运用五个维度76个数字化相关词频进行统计
(2)参考赵宸宇老师的做法,对数字技术应用、互联网商业模式、智能制造、现代信息系统四个维度99个数字化相关词频进行统计
(3)参考甄红线老师的做法,对技术分类、组织赋能、数字化应用等类别下139个数字化相关词频进行统计
2001-2024年上市公司供应链网络关系数据
2001-2024年上市公司供应链网络关系数据
1、时间:2001-2024年
2、来源:上市公司年B、临时公告
3、指标:股票代码、统计截止日期、报表类型、一级供应链业务关系、一级供应链股票代码、二级供应链业务关系、二级供应链股票代码
4、范围:A股上市公司
5、样本量:1W+
6、指标说明:
[股票代码] - 以沪、深、北证券交易所公布的证券代码为准。
[统计截止日期] - YYYY-MM-DD,前四位表示会计报表公布年度
[报表类型] - 1.合并会计报表;2.母公司会计报表。
[一级供应链业务关系] - 业务关系包括:1=客户、2=供应商。上市公司A直接对接的客户/供应商,称为上市公司A的一级供应链。
[一级供应链股票代码] - 上市公司A的一级供应链中为上市公司的股票代码
[二级供应链业务关系] - 业务关系包括:1=客户、2=供应商。上市公司A的一级供应链直接对接的客户/供应商称为上市公司A的二级供应链。
[二级供应链股票代码] - 上市公司A的二级供应链为上市公司的股票代码
【更新至2024年】2001-2024年上市公司供应链地理距离指标数据
2001-2024年上市公司供应链地理距离指标数据
1、时间:2001-2024年
2、来源:上市公司年B、临时公告
3、指标:股票代码、统计截止日期、报表类型、业务关系、排名、客户/供应商公司ID、企业名称、是否上市公司、公司股票代码、地理临近标识、空间距离(千米)、与客户/供应商距离(千米)、是否同省份企业、是否同城市企业
4、范围:A股上市公司
5、样本量:6W+
6、指标说明:
[股票代码] - 以沪、深、北证券交易所公布的证券代码为准。
[统计截止日期] - YYYY-MM-DD,前四位表示会计报表公布年度。
[报表类型] - 1.合并会计报表;2.母公司会计报表。
[业务关系] - 1=客户;2=供应商
[排名] - 对客户/供应商按照销售额或采购额进行排名。与前五大客户销售信息表、前五大供应商采购信息表排名一致。
[客户/供应商公司ID] - null
[企业名称] - null
[是否上市公司] - null
[公司股票代码] - null
[地理临近标识] - 根据双方注册地址判断,如果上市公司与其客户/供应商的空间距离在100公里以内取1,否则取0。
[空间距离] - 根据双方注册地址计算空间距离,公式可参考文献:JUN-KOOKANG,JIN-MOKIM.TheGeographyofBlockAcquisitions[J].TheJournalofFinance,2008。具体公示见说明书“3.公式计算”。
[与客户/供应商距离] - 计算公式为:上市公司与其客户/供应商空间距离加1的自然对数,再取其相反数。
[是否同省份企业] - 客户/供应商与上市公司注册所在省份相同,1=是,0=否。
[是否同城市企业] - 客户/供应商与上市公司注册所在城市相同,1=是,0=否。
【更新至2024年】2001-2024年上市公司供应链集中度指标数据
2001-2024年上市公司供应链集中度指标数据
1、时间:2001-2024年
2、来源:上市公司NB、临时公告
3、指标:股票代码、统计截止日期、报表类型、第一大客户销售额(元)、前五大客户销售额(元)、第一大供应商采购额(元)、前五大供应商采购额(元)、营业总收入(元)、第一大客户销售额占总销售额比率(%)、第一大供应商采购额占总采购额比率(%)、客户集中度(%)、供应商集中度(%)、客户集中度赫芬达尔指数(%)、供应商集中度赫芬达尔指数(%)、供应链集中度(%)
4、范围:A股上市公司
5、样本量:7.5W+
6、指标说明:
[股票代码] - 以沪、深、北证券交易所公布的证券代码为准。
[统计截止日期] - YYYY-MM-DD,前四位表示会计报表公布年度
[报表类型] - 1.合并会计报表;2.母公司会计报表。
[第一大客户销售额] - null
[前五大客户销售额] - null
[第一大供应商采购额] - null
[前五大供应商采购额] - null
[营业总收入] - null
[第一大客户销售额占总销售额比率] - null
[第一大供应商采购额占总采购额比率] - null
[客户集中度] - 计算公式为:前五大客户销售额占年度总销售额比率
[供应商集中度] - 计算公式为:前五大供应商采购额占年度总采购额比率
[客户集中度赫芬达尔指数] - 计算公式为:前五大客户销售额占总销售额比率平方之和。
[供应商集中度赫芬达尔指数] - 计算公式为:前五大供应商采购额占总采购额比率平方之和。
[供应链集中度] - 计算公式为:向前5大供应商、客户采购销售比例之和的均值,即:(向前5名供应商采购比例+向前5名客户销售比例)/2
2001-2024年上市公司前五大客户销售信息数据
2001-2024年上市公司前五大客户销售信息数据
1、时间:2001-2024年
2、来源:上市公司年B、临时公告
3、指标:股票代码、统计截止日期、报表类型、排名、客户公司ID、客户名称、是否上市公司、公司股票代码、是否上市公司关联公司、关联上市公司股票代码、客户销售额(元)、客户销售额占比(%)、币种
4、范围:A股上市公司
5、样本量:31.6W+
6、指标说明:
[股票代码] - 以沪、深、北证券交易所公布的证券代码为准。
[统计截止日期] - YYYY-MM-DD,前四位表示会计报表公布年度。
[报表类型] - 1.合并会计报表;2.母公司会计报表。
[排名] - 客户排名
[客户公司ID] - null
[客户名称] - null
[是否上市公司] - 客户是否是上市公司,是Y,否N。
[公司股票代码] - 客户是上市公司所对应的股票代码。
[是否上市公司关联公司] - 客户是否是上市公司的关联公司,1=联营公司;2=合营公司;3=子公司。若客户同时与多家上市公司有关联关系,则用逗号隔开;若没有关联关系则为空。
[关联上市公司股票代码] - 客户是某上市公司的联营、合营、子公司时所对应的该上市公司的股票代码。若客户同时与多家上市公司有关联关系,则对应的股票代码用逗号隔开。排列顺序与“是否上市公司关联公司”对应。
[客户销售额] - 本期上市公司向客户销售的金额。
[客户销售额占比] - 本期上市公司向客户销售额占年度销售总额的比例。
[币种] - 一般包含三种:CNY=人民币,HKD=港币,USD=美元,不同项目可能涉及不同币种。
【更新至2024年】2001-2024年上市公司前五大供应商采购信息数据.xlsx
2001-2024年上市公司前五大供应商采购信息数据
1、时间:2001-2024年
2、来源:上市公司NB、临时公告
3、指标:股票代码、统计截止日期、报表类型、排名、供应商公司ID、供应商名称、是否上市公司、公司股票代码、是否上市公司关联公司、关联上市公司股票代码、供应商采购额(元)、供应商采购额占比(%)、币种
4、范围:A股上市公司
5、样本量:22.4W+
6、指标说明:
[股票代码] - 以沪、深、北证券交易所公布的证券代码为准。
[统计截止日期] - YYYY-MM-DD,前四位表示会计报表公布年度。
[报表类型] - 1.合并会计报表;2.母公司会计报表。
[排名] - 供应商排名
[供应商公司ID] - null
[供应商名称] - null
[是否上市公司] - 供应商是否是上市公司,Y=是,N=否。
[公司股票代码] - 供应商是上市公司所对应的股票代码。
[是否上市公司关联公司] - 供应商是否是上市公司的关联公司,1=联营公司;2=合营公司;3=子公司。若供应商同时与多家上市公司有关联关系,则用逗号隔开;若没有关联关系则为空。
[关联上市公司股票代码] - 供应商是某上市公司的联营、合营、子公司时所对应的该上市公司的股票代码。若供应商同时与多家上市公司有关联关系,则对应的股票代码用逗号隔开。排列顺序与“是否上市公司关联公司”对应。
[供应商采购额] - 本期上市公司向供应商的采购金额。
[供应商采购额占比] - 本期上市公司向供应商的采购额占年度采购总额的比例。
[币种] - 一般包含三种:CNY=人民币,HKD=港币,USD=美元,不同项目可能涉及不同币种
1998-2023年各地级市第一产业占GDP比重/地级市第一产业占比数据(市辖区)
1998-2023年各地级市第一产业占GDP比重/地级市第一产业占比数据(市辖区)
1、时间:1998-2023年
2、指标:地级市第一产业占GDP比重/地级市第一产业占比
3、来源:城市统计NJ
4、范围:299个地级市
5、缺失情况:缺失情况与年鉴一致,表内附有年鉴第一产业占比原始数据,以2022年地级市名单进行统计整理,为市辖区数据
1998-2023年各地级市第一产业占GDP比重数据(全市)
1998-2023年各地级市第一产业占GDP比重数据(全市)
1、时间:1998-2023年
2、指标:第一产业占比/第一产业占GDP比重
3、来源:城市统计NJ
4、范围:290+个地级市
5、缺失情况:缺失情况与年鉴一致,表内附有年鉴第一产业占比原始数据,以2022年地级市名单进行统计整理,2017年年鉴未统计全市层面数据,为市辖区数据
2001-2023年各地级市人均地区生产总值数据、人均GDP(市辖区)
2001-2023年各地级市人均地区生产总值数据、人均GDP(市辖区)
1、时间:2001-2023年
2、指标:人均地区生产总值/人均GDP
3、范围:299个地级市,市辖区层面数据
4、来源:城市统计NJ
5、缺失情况:缺失情况与年鉴一致,表内附有年鉴国内生产总值原始数据,以2022年地级市名单进行统计整理。
1996-2024年各省财政支出数据(无缺失)
1996-2024年各省财政支出数据(无缺失)
1、时间:1996-2024年
2、来源:国家统计J、统计NJ
3、指标:地方财政一般预算支出
4、范围:31省
5、确实情况:无缺失
【更新至2023年】2005-2023年全国及31省绿色信贷水平测算数据(含原始数据+计算过程+结果).xls
2005-2023年各省绿色信贷水平测算数据(含原始数据+计算过程+计算结果)
1、时间:2005-2023年
2、来源:工业统计NJ、统计NJ、其中2017年采用插值法填补,2023年数据整理自经济普查NJ2023
3、范围:31省
4、方法说明:选取各省六大高耗能产业利息支出占工业产业利息总支出的比率作为反向指标来衡量绿色信贷水平;六大高能耗产业为:化学、石油、电力热力、黑色金属、有色金属、非金属
5、参考文献:谢婷婷,刘锦华.绿色信贷如何影响Z国绿色经济增长?
1990-2024年上市公司偿债能力指标数据(季度数据)
1990-2024年上市公司偿债能力指标数据(季度数据)
1、时间:1990-2024年
2、指标:股票代码、股票简称、统计截止日期、报表类型编码、公告来源、行业代码、行业名称、行业代码1、行业名称1、流动比率、速动比率、保守速动比率、现金比率、营运资金与借款比、营运资金(元)、利息保障倍数A、利息保障倍数B、经营活动产生的现金流量净额/流动负债、现金流利息保障倍数、现金流到期债务保障倍数、资产负债率、长期借款与总资产比、有形资产负债率、有形资产带息债务比、权益乘数、产权比率、权益对负债比率、长期资本负债率、长期负债权益比率、长期债务与营运资金比率、息税折旧摊销前利润/负债合计、经营活动产生的现金流量净额/负债合计、经营活动产生的现金流量净额/带息债务、负债与权益市价比率、有形净值债务率、固定支出偿付倍数、权益乘数2
3、来源:上市公司NB
4、范围:A股上市公司
1990-2024年各省地方财政一般预算收入数据(无缺失)
1990-2024年各省地方财政一般预算收入数据(无缺失)
1、时间:1990-2024年
2、来源:国家统计J、统计NJ
3、指标:地方财政一般预算收入
4、范围:31省
5、确实情况:无缺失
【更新至2024年】2000-2024年各省名义GDP、实际GDP、GDP平减指数数据(含原始数据+计算过程+计算结果)(以2000年为基期)
2000-2024年各省名义GDP、实际GDP、GDP平减指数数据(含原始数据+计算过程+计算结果)(以2000年为基期)
1、时间:2000-2024年
2、范围:31省
3、指标:名义GDP、国内生产总值指数、实际GDP、GDP平减指数
4、来源:统计NJ、国家统计J
5、缺失情况:无缺失
6、计算说明:以2000年为基期
可根据需要参考计算过程自行调整基期
计算步骤:第一步计算不变价GDP(以2000年为基期):2001年实际GDP:2000年的名义GDP*2001年地区生产总值指数/100;2002年实际GDP:2001年实际GDP*2002年地区生产总值指数/100,依此类推
第二步GDP平减指数(以2000年为基期):GDP平减指数(以2000年为基期):名义GDP/不变价GDP(以2000年为基期)