强化学习术语:模型、策略和值函数
强化学习(Reinforcement Learning, RL)是一种重要的机器学习方法,广泛应用于机器人控制、游戏AI、自动驾驶等领域。在理解和应用强化学习时,我们需要掌握一些关键术语:模型、策略和值函数。本文将深入浅出地介绍这些术语,并结合有趣的实例帮助读者理解它们。
模型(Model)
什么是模型?
在强化学习中,模型指的是对环境动态和奖励的数学描述。模型包括两个部分:
- 状态转移概率(Transition Probability):描述在某个状态下采取某个动作后转移到另一个状态的概率。
- 奖励函数(Reward Function):描述在某个状态下采取某个动作所获得的即时奖励。
通过这些数学模型,我们可以模拟和预测环境的行为,从而更好地制定策略。
模型的应用
在许多强化学习算法中,模型用于预测未来状态和奖励,从而帮助智能体(Agent)做出更好的决策。例如,在一个自动驾驶系统中,模型可以预测在当前速度和方向下,下一时刻车辆的位置和可能的奖励(如避开障碍物的得分)。
策略(Policy)
什么是策略?
策略是一个函数,它将状态映射到动作。简单来说,策略告诉智能体在每个状态下应该采取什么动作。策略可以是确定性的,也可以是随机性的。
- 确定性策略(Deterministic Policy):在每个状态下总是选择相同的动作。
- 随机性策略(Stochastic Policy):在每个状态下选择动作的概率分布。
策略的应用
策