蒙特卡罗(MC)策略评估:强化学习中的简单高效方法
在强化学习中,策略评估是一个关键步骤,用于估算在特定策略下,智能体在不同状态的预期回报。蒙特卡罗(Monte Carlo, MC)策略评估是一种简单而有效的方法,通过模拟多条完整的轨迹来计算状态值函数。本文将详细介绍蒙特卡罗策略评估的原理、特点和应用场景,并结合具体实例帮助读者更好地理解这一方法。
蒙特卡罗策略评估的基本原理
轨迹回报的定义
在一个马尔可夫决策过程(MDP)中,给定策略 (\pi),从时间步 (t) 开始的总回报 (G_t) 定义为:
[ G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots + \gamma^{T_i-t} r_{T_i} ]
其中:
- ( r_t ) 是在时间步 (t) 的即时奖励。
- (\gamma) 是折扣因子,介于0和1之间。
- (T_i) 是轨迹的终止时间步。
状态值函数的估算
状态 (s) 的值函数 (V^\pi(s)) 是在策略 (\pi) 下,从状态 (s) 开始的预期总回报的期望值,即:
[ V^\pi(s) = \mathbb{E}_{\tau \sim \pi}[G_t | s_t = s] ]
其中,(\tau) 表示在策略 (\pi) 下生成的轨迹。
蒙特卡罗策略评估的方法步骤
- 生成样本轨迹:在给定策略 (\pi) 下,模拟多条从初始状态到终止状态的轨迹。
- 计算每条轨迹的回报:对于每条轨迹,从每个状态开始,计算其到达终止状态的总回报。
- 平均回报:对于每个状态,计算其