蒙特卡罗(MC)策略评估:强化学习中的简单高效方法

蒙特卡罗(MC)策略评估:强化学习中的简单高效方法

在强化学习中,策略评估是一个关键步骤,用于估算在特定策略下,智能体在不同状态的预期回报。蒙特卡罗(Monte Carlo, MC)策略评估是一种简单而有效的方法,通过模拟多条完整的轨迹来计算状态值函数。本文将详细介绍蒙特卡罗策略评估的原理、特点和应用场景,并结合具体实例帮助读者更好地理解这一方法。

蒙特卡罗策略评估的基本原理

轨迹回报的定义

在一个马尔可夫决策过程(MDP)中,给定策略 (\pi),从时间步 (t) 开始的总回报 (G_t) 定义为:

[ G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots + \gamma^{T_i-t} r_{T_i} ]

其中:

  • ( r_t ) 是在时间步 (t) 的即时奖励。
  • (\gamma) 是折扣因子,介于0和1之间。
  • (T_i) 是轨迹的终止时间步。

状态值函数的估算

状态 (s) 的值函数 (V^\pi(s)) 是在策略 (\pi) 下,从状态 (s) 开始的预期总回报的期望值,即:

[ V^\pi(s) = \mathbb{E}_{\tau \sim \pi}[G_t | s_t = s] ]

其中,(\tau) 表示在策略 (\pi) 下生成的轨迹。

蒙特卡罗策略评估的方法步骤

  1. 生成样本轨迹:在给定策略 (\pi) 下,模拟多条从初始状态到终止状态的轨迹。
  2. 计算每条轨迹的回报:对于每条轨迹,从每个状态开始,计算其到达终止状态的总回报。
  3. 平均回报:对于每个状态,计算其
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值