力扣热题 100:堆专题经典题解析

系列文章目录

力扣热题 100:哈希专题三道题详细解析(JAVA)
力扣热题 100:双指针专题四道题详细解析(JAVA)
力扣热题 100:滑动窗口专题两道题详细解析(JAVA)
力扣热题 100:子串专题三道题详细解析(JAVA)
力扣热题 100:普通数组专题五道题详细解析(JAVA)
力扣热题 100:矩阵专题四道题详细解析(JAVA)
力扣热题 100:链表专题经典题解析(前7道)
力扣热题 100:链表专题经典题解析(后7道)
力扣热题 100:二叉树专题经典题解析(前8道)
力扣热题 100:二叉树专题进阶题解析(后7道)
力扣热题 100:图论专题经典题解析
力扣热题 100:回溯专题经典题解析
力扣热题 100:二分查找专题经典题解析
力扣热题 100:栈专题经典题解析
力扣热题 100:堆专题经典题解析
力扣热题 100:贪心算法专题经典题解析
力扣热题 100:动态规划专题经典题解析
力扣热题 100:多维动态规划专题经典题解析
力扣热题 100:技巧专题经典题解析

在力扣(LeetCode)平台上,堆相关的题目是算法面试和练习中的重要部分。今天,我们就来详细解析堆专题中的几道经典题目,帮助大家更好地理解解题思路和技巧。

一、数组中的第 K 个最大元素(题目 215)

1. 题目描述

给定一个整数数组 nums 和一个整数 k,找到数组中的第 k 个最大元素。

2. 示例

示例 1:

输入:nums = [3, 2, 1, 5, 6, 4], k = 2

输出:5

3. 解题思路

这道题主要考察堆的应用。我们可以使用一个大小为 k 的小顶堆来维护前 k 个最大元素。具体步骤如下:

  1. 构建一个大小为 k 的小顶堆。
  2. 遍历数组,将前 k 个元素放入堆中。
  3. 继续遍历数组,对于每个元素,如果它大于堆顶元素,则替换堆顶元素并调整堆。
  4. 最后,堆顶元素即为第 k 个最大元素。

4. 代码实现(Java)

import java.util.PriorityQueue;

public class Solution {
    public int findKthLargest(int[] nums, int k) {
        PriorityQueue<Integer> heap = new PriorityQueue<>(k);
        for (int i = 0; i < k; i++) {
            heap.add(nums[i]);
        }
        for (int i = k; i < nums.length; i++) {
            if (nums[i] > heap.peek()) {
                heap.poll();
                heap.add(nums[i]);
            }
        }
        return heap.peek();
    }
}

5. 复杂度分析

  • 时间复杂度 :O(n log k),其中 n 是数组的长度。构建堆的时间复杂度为 O(k),后续每次调整堆的时间复杂度为 O(log k),总共需要调整 n - k 次。
  • 空间复杂度 :O(k),需要使用一个大小为 k 的堆。

二、前 K 个高频元素(题目 347)

1. 题目描述

给定一个非空的整数数组 nums,返回出现频率最高的前 k 个元素。

2. 示例

示例 1:

输入:nums = [1, 1, 1, 2, 2, 3], k = 2

输出:[1, 2]

3. 解题思路

这道题主要考察堆的应用。我们可以使用一个哈希表来统计每个元素的频率,然后使用一个大小为 k 的小顶堆来维护前 k 个高频元素。具体步骤如下:

  1. 使用哈希表统计每个元素的频率。
  2. 构建一个大小为 k 的小顶堆。
  3. 遍历哈希表,将元素按频率放入堆中。
  4. 如果堆的大小超过 k,则弹出堆顶元素。
  5. 最后,堆中的元素即为前 k 个高频元素。

4. 代码实现(Java)

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.PriorityQueue;

public class Solution {
    public List<Integer> topKFrequent(int[] nums, int k) {
        Map<Integer, Integer> frequencyMap = new HashMap<>();
        for (int num : nums) {
            frequencyMap.put(num, frequencyMap.getOrDefault(num, 0) + 1);
        }
        PriorityQueue<Map.Entry<Integer, Integer>> heap = new PriorityQueue<>(
            (a, b) -> a.getValue() - b.getValue()
        );
        for (Map.Entry<Integer, Integer> entry : frequencyMap.entrySet()) {
            heap.add(entry);
            if (heap.size() > k) {
                heap.poll();
            }
        }
        List<Integer> result = new ArrayList<>();
        while (!heap.isEmpty()) {
            result.add(heap.poll().getKey());
        }
        return result;
    }
}

5. 复杂度分析

  • 时间复杂度 :O(n log k),其中 n 是数组的长度。统计频率的时间复杂度为 O(n),后续每次调整堆的时间复杂度为 O(log k),总共需要调整 n 次。
  • 空间复杂度 :O(n + k),需要使用哈希表存储频率,堆的大小为 k。

三、数据流的中位数(题目 295)

1. 题目描述

设计一个数据结构,能够高效地添加整数和找到当前所有元素的中位数。

2. 示例

示例 1:

输入:

["MedianFinder", "addNum", "addNum", "findMedian", "addNum", "findMedian"]
[[], [1], [2], [], [3], []]

输出:

[null, null, null, 1.5, null, 2.0]

3. 解题思路

这道题主要考察堆的应用。我们可以使用两个堆来维护数据流的中位数。具体步骤如下:

  1. 使用一个大顶堆 maxHeap 存储较小的一半元素,使用一个小顶堆 minHeap 存储较大的一半元素。
  2. 添加元素时,根据元素大小决定放入哪个堆,并保持两个堆的大小平衡。
  3. 当两个堆的大小相等时,中位数是两个堆顶元素的平均值;当大小不等时,中位数是较大堆的堆顶元素。

4. 代码实现(Java)

import java.util.PriorityQueue;

public class MedianFinder {
    private PriorityQueue<Integer> maxHeap;
    private PriorityQueue<Integer> minHeap;

    public MedianFinder() {
        maxHeap = new PriorityQueue<>((a, b) -> b - a);
        minHeap = new PriorityQueue<>();
    }

    public void addNum(int num) {
        if (maxHeap.isEmpty() || num <= maxHeap.peek()) {
            maxHeap.add(num);
        } else {
            minHeap.add(num);
        }
        if (maxHeap.size() > minHeap.size() + 1) {
            minHeap.add(maxHeap.poll());
        } else if (minHeap.size() > maxHeap.size()) {
            maxHeap.add(minHeap.poll());
        }
    }

    public double findMedian() {
        if (maxHeap.size() == minHeap.size()) {
            return (maxHeap.peek() + minHeap.peek()) / 2.0;
        } else {
            return maxHeap.peek();
        }
    }
}

5. 复杂度分析

  • 时间复杂度 :每次添加元素的时间复杂度为 O(log n),其中 n 是当前元素的数量。查找中位数的时间复杂度为 O(1)。
  • 空间复杂度 :O(n),需要使用两个堆存储所有元素。

以上就是力扣热题 100 中与堆相关的经典题目的详细解析,希望对大家有所帮助。在实际刷题过程中,建议大家多动手实践,理解解题思路的本质,这样才能更好地应对各种算法问题。在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值