[GPT-2]论文解读:Language Models are Unsupervised Multitask Learners

论文:Language Models are Unsupervised Multitask Learners
作者:Alec Radford, Jeff Wu, Rewon Child, D. Luan, Dario Amodei, I. Sutskever
时间:2019

介绍

GPT-2 是一个有15亿参数的模型,GPT-2的想法是转向一个通用的系统,不需要进行数据集的标注就可以执行许多的任务;

因为数据集的创建是很难的,我们很难继续将数据集的创建和目标的设计扩大到可能需要用现有的技术推动我们前进的程度。这促使我们去探索执行多任务学习的额外设置。

当前性能最好的语言模型系统是通过预训练模型和微调完成的,预训练主要是自注意力模块去识别字符串的语意,而微调主要是通过语意去得出不同的结果;这样一来,我们在执行不同的任务时,只需要替换掉微调的那部分结构就可以;

而GPT-2证实了语言模型能够在不进行任何参数和结构修改的情况下,拥有执行下游任务的能力,这种能力获取的主要方式是强化语言模型的 zero-shot

zero-shot learning 零样本学习

零样本学习也叫ZSL,通俗来讲就是说在训练集中并没有出现的y能够在测试集中识别出来;当然,如果不做任何处理我们是无法识别的,我们需要没有出现的y的信息来帮助我们识别y;通过上面的图我们可以知道,horse和donkey可以得出horselike,tiger和hyena可以得出stripe,penguin和panda 可以得出 black and white,这里我们可以通过zebra的描述信息可以得出horselike,stripe,black and white 的动物是斑马来训练模型,这样我们可以在测试集的时候识别出斑马;

这里有两篇比较详细的介绍:

零次学习(Zero-Shot Learning)入门 (zhihu.com)
零次学习(Zero-Shot Learning) - 知乎 (zhihu.com)

方法

首先介绍一下语言模型:

p ( x ) = p ( s 1 , s 2 , … , s n ) = ∏ i = 1 n p ( s n ∣ s 1 , … , s n − 1 ) p(x)=p(s_1,s_2,\dots,s_n)=\prod_{i=1}^{n}p(s_n|s_1,\dots,s_{n-1}) p(x)=p(s1,s2,,sn)=i=1np(sns1,,sn1)
其中 x x x是句子, s 1 , s 2 , … , s n s_1,s_2,\dots,s_n s1

### GPT-2 论文解析 GPT-2 是 OpenAI 发布的一系列大型语言模型之一,其核心理念基于 Transformer 架构,并扩展了生成式预训练的思想。以下是关于 GPT-2 的详细解读: #### 1. **背景与动机** GPT-2 延续了 GPT-1 中提出的生成式预训练和判别性微调的理念[^3]。它旨在通过更大规模的数据集和更高的参数量来增强模型的语言理解和生成能力。相比于 GPT-1,GPT-2 使用了更多的训练数据(约 40GB 文本),从而显著提升了模型的表现。 #### 2. **核心技术特点** - **Transformer 架构**: GPT-2 完全采用了单向 Transformer 编码器结构,这意味着它的注意力机制仅关注输入序列的前缀部分,而不像 BERT 那样的双向模型能够同时看到前后上下文。 - **大规模预训练**: GPT-2 利用了大量的互联网文本进行无监督预训练,使其具备广泛的知识基础。这种预训练方式使得模型能够在多种下游任务中表现出色而无需额外标注数据。 - **自回归生成**: GPT-2 是一种自回归语言模型,逐词生成文本。这种方式允许模型在生成过程中逐步构建连贯性和逻辑性[^2]。 #### 3. **主要贡献** - 提出了一个强大的通用语言表示模型,适用于各种自然语言处理任务,包括但不限于翻译、摘要生成、问答等。 - 展示了大模型在少量样本甚至零样本条件下仍能完成复杂任务的可能性。 - 探讨了伦理问题和社会影响,由于其强大的生成能力和潜在滥用风险,在发布初期采取了分阶段公开策略。 #### 4. **局限性分析** 尽管取得了巨大进步,但 GPT-2 存在一定局限性: - 对于某些特定类型的推理任务(如 WIC 或 ANLI),因缺乏双向建模能力而导致效果不如其他专门设计的方法好。 - 在面对需要深入理解长文档后再作答的情况下也可能遇到挑战。 #### 示例代码展示 下面是一个简单的 Python 脚本来加载并测试 Hugging Face 版本下的 pre-trained GPT-2 模型: ```python from transformers import pipeline, set_seed set_seed(42) nlp = pipeline('text-generation', model='gpt2') result = nlp("Artificial intelligence is", max_length=50, do_sample=True) print(result[0]['generated_text']) ``` 此脚本利用 `transformers` 库中的 `pipeline` 功能快速搭建起了一个基于 GPT-2 的文本生成环境。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值