目录
1.树型结构
1.1 概念
树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:
-
有一个特殊的结点,称为根结点,根结点没有前驱结点
-
除根结点外,其余结点被分成M(M > 0)个互不相交的集合T1、T2、......、Tm,其中每一个集合Ti (1 <= i <=m) 又是一棵与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
-
树是递归定义的。
注意:
树形结构中,子树之间不能有交集,否则就不是树形结构
如下图:
1.2 树内部概念
结点的度:一个结点含有子树的个数称为该结点的度; 如上图:A的度为6
树的度:一棵树中,所有结点度的最大值称为树的度; 如上图:树的度为6
叶子结点或终端结点:度为0的结点称为叶结点; 如上图:B、C、H、I...等节点为叶结点
双亲结点或父结点:若一个结点含有子结点,则这个结点称为其子结点的父结点; 如上图:A是B的父结点
孩子结点或子结点:一个结点含有的子树的根结点称为该结点的子结点; 如上图:B是A的孩子结点
根结点:一棵树中,没有双亲结点的结点;如上图:A结点的层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推
树的高度或深度:树中结点的最大层次; 如上图:树的高度为4
非终端结点或分支结点:度不为0的结点; 如上图:D、E、F、G...等节点为分支结点
兄弟结点:具有相同父结点的结点互称为兄弟结点; 如上图:B、C是兄弟结点
堂兄弟结点:双亲在同一层的结点互为堂兄弟;如上图:H、I互为兄弟结点
结点的祖先:从根到该结点所经分支上的所有结点;如上图:A是所有结点的祖先
子孙:以某结点为根的子树中任一结点都称为该结点的子孙。如上图:所有结点都是A的子孙
森林:由m(m>=0)棵互不相交的树组成的集合称为森林
1.3 树的表示形式
树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,实际中树有很多种表示方式,如:双亲表示法,孩子表示法、孩子双亲表示法、孩子兄弟表示法等等。我们这里就简单的了解其中最常用的孩子兄弟表示法。
class Node {
int value;
// 树中存储的数据
Node firstChild;
// 第一个孩子引用
Node nextBrother;
// 下一个兄弟引用
}
1.4 树的应用
文件系统管理(目录和文件)
2. 二叉树
2.1 概念
一棵二叉树是结点的一个有限集合,该集合:
-
或者为空
-
或者是由一个根节点加上两棵别称为左子树和右子树的二叉树组成。
从上图可以看出:
-
二叉树不存在度大于2的结点
-
二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
注意:对于任意的二叉树都是由以下几种情况复合而成的:
2.2 两种特殊的二叉树
-
满二叉树: 一棵二叉树,如果每层的结点数都达到最大值,则这棵二叉树就是满二叉树。也就是说,如果一棵二叉树的层数为K,且结点总数是,则它就是满二叉树。
-
完全二叉树: 完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从0至n-1的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。
注意:
非完全二叉树(如下图):
2.3 二叉树的性质
1.若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有(i>0)个结点
2.若规定只有根结点的二叉树的深度为1,则深度为K的二叉树的最大结点数是(k>=0)
3.对任何一棵二叉树, 如果其叶结点个数为 n0, 度为2的非叶结点个数为 n2,则有n0=n2+1
4.具有n个结点的完全二叉树的深度k为向上取整
5.对于具有n个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有节点从0开始编号,则对于序号为i的结点有:
-
若i>0,双亲序号:(i-1)/2;i=0,i为根结点编号,无双亲结点
-
若2i+1<n,左孩子序号:2i+1,否则无左孩子
-
若2i+2<n,右孩子序号:2i+2,否则无右孩子
6.练习
1)某二叉树共有 399 个结点,其中有 199 个度为 2 的结点,则该二叉树中的叶子结点数为( )
A 不存在这样的二叉树
B 200 √
C 198
D 199
2)在具有 2n 个结点的完全二叉树中,叶子结点个数为( )
A n √
B n+1
C n-1
D n/2
3)一个具有767个节点的完全二叉树,其叶子节点个数为()
A 383√
B 384
C 385
D 386
4) 一棵完全二叉树的节点数为531个,那么这棵树的高度为( )
A 11
B 10√
C 8
D 12
2.4 二叉树的基本操作
1.前序遍历:
public void preOrder(TreeNode root) {
if (root == null) {
return;
}
System.out.print(root.val + " ");
preOrder(root.left);
preOrder(root.right);
}
2.中序遍历
public void inOrder(TreeNode root) {
if (root == null) {
return;
}
inOrder(root.left);
System.out.print(root.val + " ");
inOrder(root.right);
}
3.后序遍历
public void postOrder(TreeNode root) {
if (root == null) {
return;
}
postOrder(root.left);
postOrder(root.right);
System.out.print(root.val + " ");
}
4.获取叶子节点的个数
1)遍历方案:
public static int leafNodeCount = 0;
public void getLeafNodeCount(TreeNode root) {
if (root == null) {
return;
}
if (root.left == null && root.right == null) {
leafNodeCount++;
}
getLeafNodeCount(root.left);
getLeafNodeCount(root.right);
}
2)子问题方案
public int getLeafNodeCount2(TreeNode root) {
if (root == null) {
return 0;
}
if (root.left == null && root.right == null) {
return 1;
}
return getLeafNodeCount2(root.left) + getLeafNodeCount2(root.right);
}
5.获取第K层节点的个数
子问题方案
public int getKLevelNodeCount(TreeNode root, int k) {
if (root == null) {
return 0;
}
if (k == 1) {
return 1;
}
return getKLevelNodeCount(root.left, k - 1) + getKLevelNodeCount(root.right, k - 1);
}
6.获取二叉树的高度
public int getHeight(TreeNode root) {
if (root == null) {
return 0;
}
return Math.max(getHeight(root.left), getHeight(root.right)) + 1;
}
7.检测值为value的元素是否存在
public TreeNode find(TreeNode root, int val) {
if(root == null) {
return null;
}
if(root.val == val) {
return root;
}
TreeNode leftT = find(root.left, val);
if (leftT.val == val) {
return leftT;
}
TreeNode rightT = find(root.right, val);
if (rightT.val == val) {
return rightT;
}
return null;
}
8.层序遍历
class Solution {
public void levelOrder(TreeNode root) {
if(root == null) {
return;
}
Queue<TreeNode> queue = new LinkedList<>();
TreeNode cur = null;
queue.offer(root);
while(!queue.isEmpty()) {
cur = queue.poll();
System.out.print(cur.val + " ");
if(cur.left != null) {
queue.offer(cur.left);
}
if(cur.right != null) {
queue.offer(cur.right);
}
}
}
}
}
此处用到了队列来辅助完成层序遍历
9.判断一棵树是不是完全二叉树
public boolean isCompleteTree(TreeNode root) {
if (root == null) {
return true;
}
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
while (!queue.isEmpty()) {
TreeNode cur = queue.poll();
if (cur != null) {
queue.offer(cur.left);
queue.offer(cur.right);
}else {
break;
}
}
while (!queue.isEmpty()) {
if (queue.poll() != null) {
return false;
}
}
return true;
}
2.5 二叉树相关oj题
1.检查两颗树是否相同
class Solution {
public boolean isSameTree(TreeNode p, TreeNode q) {
if(p == null && q != null || p != null && q == null) {
return false;
}
if(p == null && q == null) {
return true;
}
if(p.val != q.val) {
return false;
}
return isSameTree(p.left, q.left) && isSameTree(p.right, q.right);
}
}
注意时间复杂度:
2.判断是不是另一颗树的子树
class Solution {
public boolean isSubtree(TreeNode root, TreeNode subRoot) {
if(root == null) {
return false;
}
if(isSameTree(root, subRoot)) return true;
if(isSubtree(root.left, subRoot)) return true;
if(isSubtree(root.right, subRoot)) return true;
return false;
}
public boolean isSameTree(TreeNode p, TreeNode q) {
if(p == null && q != null || p != null && q == null) {
return false;
}
if(p == null && q == null) {
return true;
}
if(p.val != q.val) {
return false;
}
return isSameTree(p.left, q.left) && isSameTree(p.right, q.right);
}
}
3.翻转二叉树
class Solution {
public static TreeNode tmp;
public TreeNode invertTree(TreeNode root) {
if(root == null) {
return null;
}
if(root.left == null && root.right == null)
{
return root;
}
tmp = root.left;
root.left = root.right;
root.right = tmp;
invertTree(root.left);
invertTree(root.right);
return root;
}
}
4.对称二叉树
class Solution {
public boolean isSymmetric(TreeNode root) {
if(root == null) {
return true;
}
return isSymmetricChild(root.left, root.right);
}
public boolean isSymmetricChild(TreeNode leftTree, TreeNode rightTree) {
if(leftTree != null && rightTree == null || leftTree == null && rightTree != null) {
return false;
}
if(leftTree == null && rightTree == null) {
return true;
}
if(leftTree.val != rightTree.val) {
return false;
}
return isSymmetricChild(leftTree.left, rightTree.right) && isSymmetricChild(leftTree.right, rightTree.left) ;
}
}
5.判断一颗二叉树是否是平衡二叉树
1)时间复杂度 O(n^2)
class Solution {
public boolean isBalanced(TreeNode root) {
if(root == null) {
return true;
}
return Math.abs(getHeight(root.left) - getHeight(root.right)) < 2 && isBalanced(root.left) && isBalanced(root.right);
}
public int getHeight(TreeNode root) {
if (root == null) {
return 0;
}
return Math.max(getHeight(root.left), getHeight(root.right)) + 1;
}
}
2)时间复杂度 O(n)
class Solution {
public boolean isBalanced(TreeNode root) {
if(root == null) {
return true;
}
return getHeight(root) >= 0;
}
public int getHeight(TreeNode root) {
if (root == null) {
return 0;
}
int leftHeight = getHeight(root.left);
if(leftHeight < 0) {
return -1;
}
int rightHeight = getHeight(root.right);
if(rightHeight < 0) {
return -1;
}
if(Math.abs(leftHeight - rightHeight) <= 1) {
return Math.max(leftHeight, rightHeight) + 1;
}else {
return -1;
}
}
}
6.二叉树的构建及遍历
import java.util.Scanner;
class TreeNode {
public char val;
public TreeNode left;
public TreeNode right;
public TreeNode(char val) {
this.val = val;
}
}
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
// 注意 hasNext 和 hasNextLine 的区别
while (in.hasNextLine()) { // 注意 while 处理多个 case
String str = in.nextLine();
TreeNode root = createTree(str);
inorderTree(root);
}
}
public int i = 0;
public TreeNode createTree(String str) {
TreeNode root = null;
if(str.charAt(i) != '#') {
root = new TreeNode(str.charAt(i));
i++;
root.left = createTree(str);
root.right = createTree(str);
}else {
i++;
}
return root;
}
public void inorderTree(TreeNode root) {
if(root == null) {
return;
}
inorderTree(root.left);
System.out.print(root.val + " ");
inorderTree(root.right);
}
}
7.二叉树的分层遍历
class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> ret = new ArrayList<>();
if(root == null) {
return ret;
}
Queue<TreeNode> queue = new LinkedList<>();
TreeNode cur = null;
queue.offer(root);
while(!queue.isEmpty()) {
int size = queue.size();
List<Integer> list = new ArrayList<>();
while(size != 0) {
cur = queue.poll();
list.add(cur.val);
if(cur.left != null) {
queue.offer(cur.left);
}
if(cur.right != null) {
queue.offer(cur.right);
}
size--;
}
ret.add(list);
}
return ret;
}
}
8.给定一个二叉树, 找到该树中两个指定节点的最近公共祖先
class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if(root == null) {
return null;
}
if(root == p || root == q) {
return root;
}
TreeNode leftTree = lowestCommonAncestor(root.left, p, q);
TreeNode rightTree = lowestCommonAncestor(root.right, p, q);
if(leftTree != null && rightTree != null) {
return root;
}else if(leftTree != null) {
return leftTree;
}else {
return rightTree;
}
}
}
9.根据一棵树的前序遍历与中序遍历构造二叉树
class Solution {
public int preIndex;
public TreeNode buildTree(int[] preorder, int[] inorder) {
return buildTreeChild(preorder,inorder, 0, inorder.length - 1);
}
public TreeNode buildTreeChild(int[] preorder, int[] inorder, int inbegin ,int inend) {
if(inbegin > inend) {
return null;
}
TreeNode root = new TreeNode(preorder[preIndex]);
int rootIndex = findVal(inorder, inbegin, inend, preorder[preIndex]);
preIndex++;
root.left = buildTreeChild(preorder, inorder, inbegin, rootIndex - 1);
root.right = buildTreeChild(preorder, inorder, rootIndex + 1, inend);
return root;
}
private int findVal(int[] inorder, int inbegin, int inend, int val) {
for(int i = inbegin; i <= inend; i++) {
if(inorder[i] == val) {
return i;
}
}
return -1;
}
}
10.根据一棵树的中序遍历与后序遍历构造二叉树
class Solution {
public int postIndex;
public TreeNode buildTree(int[] inorder, int[] postorder) {
postIndex = postorder.length - 1;
return buildTreeChild(inorder,postorder, 0, inorder.length - 1);
}
public TreeNode buildTreeChild(int[] inorder, int[] postorder, int inbegin ,int inend) {
if(inbegin > inend) {
return null;
}
TreeNode root = new TreeNode(postorder[postIndex]);
int rootIndex = findVal(inorder, inbegin, inend, postorder[postIndex]);
postIndex--;
root.right = buildTreeChild(inorder, postorder, rootIndex + 1, inend);
root.left = buildTreeChild(inorder, postorder, inbegin, rootIndex - 1);
return root;
}
private int findVal(int[] inorder, int inbegin, int inend, int val) {
for(int i = inbegin; i <= inend; i++) {
if(inorder[i] == val) {
return i;
}
}
return -1;
}
}
11.二叉树创建字符串
class Solution {
public String tree2str(TreeNode root) {
if(root == null) {
return null;
}
StringBuilder stringBuilder = new StringBuilder();
tree2strChild(root, stringBuilder);
return stringBuilder.toString();
}
public void tree2strChild(TreeNode root, StringBuilder stringBuilder) {
if(root == null) {
return;
}
stringBuilder.append(root.val);
if(root.left != null) {
stringBuilder.append("(");
tree2strChild(root.left, stringBuilder);
stringBuilder.append(")");
}else {
if(root.right == null) {
return;
}else {
stringBuilder.append("()");
}
}
if(root.right != null) {
stringBuilder.append("(");
tree2strChild(root.right, stringBuilder);
stringBuilder.append(")");
}else {
return;
}
}
}
12.二叉树前序非递归遍历实现
class Solution {
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> list = new ArrayList<>();
if(root == null) {
return list;
}
Stack<TreeNode> stack = new Stack();
TreeNode cur = root;
while(cur != null || !stack.isEmpty()){
while(cur != null) {
stack.push(cur);
list.add(cur.val);
cur = cur.left;
}
TreeNode top = stack.pop();
cur = top.right;
}
return list;
}
}
13.二叉树中序非递归遍历实现
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> list = new ArrayList<>();
if(root == null) {
return list;
}
Stack<TreeNode> stack = new Stack();
TreeNode cur = root;
while(cur != null || !stack.isEmpty()){
while(cur != null) {
stack.push(cur);
cur = cur.left;
}
TreeNode top = stack.pop();
list.add(top.val);
cur = top.right;
}
return list;
}
}
14.二叉树后序非递归遍历实现
class Solution {
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> list = new ArrayList<>();
if(root == null) {
return list;
}
Stack<TreeNode> stack = new Stack();
TreeNode cur = root;
TreeNode prev = null;
while(cur != null || !stack.isEmpty()){
while(cur != null) {
stack.push(cur);
cur = cur.left;
}
TreeNode top = stack.peek();
if(top.right == null || top.right == prev) {
list.add(top.val);
stack.pop();
prev = top;
}else {
cur = top.right;
}
}
return list;
}
}
15.二叉搜索树与双向链表
import java.util.*;
public class Solution {
TreeNode prev = null;
public void ConvertChild(TreeNode root) {
if(root == null) {
return;
}
ConvertChild(root.left);
// 打印
root.left = prev;
if(prev != null) {
prev.right = root;
}
prev = root;
ConvertChild(root.right);
}
public TreeNode Convert(TreeNode pRootOfTree) {
if(pRootOfTree == null) {
return null;
}
ConvertChild(pRootOfTree);
while(pRootOfTree.left != null) {
pRootOfTree = pRootOfTree.left;
}
return pRootOfTree;
}
}