一、k-近邻算法介绍
K-近邻算法(K-Nearest Neighbors,简称KNN)是一种基本且广泛使用的监督学习算法,主要用于分类和回归问题。它是一种基于实例的学习或懒惰学习算法,因为其核心思想是在预测时才进行计算,而不是在训练阶段。
二、k-近邻算法原理概述
2.1算法原理
KNN算法的核心思想是“物以类聚”,即相似的事物倾向于聚集在一起。对于一个给定的数据点,算法会找到训练数据集中与其最相似的K个邻居。这里的“相似”是通过某种距离度量(如欧氏距离)来定义的。然后,算法根据这K个邻居的标签来预测数据点的标签。
2.2算法步骤
-
确定参数K的值:K代表的是邻居的数量,即一个未知样本周围距离最近的K个已知样本。
-
计算距离:计算未知样本与所有已知样本之间的距离。常用的距离计算方法包括欧氏距离、曼哈顿距离和明可夫斯基距离等。
-
找到最近的K个邻居:根据计算出的距离,确定距离最近的K个样本,这些样本的类别已知。
-
进行投票:在分类任务中,K个最近邻居中出现次数最多的类别将被认为是未知样本的类别。在回归任务中,通常是取这K个最近邻居的输出的平均值作为预测值。
-
输出预测结果:根据上述投票或平均值,输出最终的预测结果。
2.3距离计算
-
欧氏距离(Euclidean Distance):
- 最常用的距离度量方法,适用于多维空间中的直线距离计算。
- 计算公式为: