k-近邻算法

本文介绍了k-近邻算法的基本概念、工作原理、步骤,包括如何选择K值和距离度量,以及如何通过Python的scikit-learn库实现。同时探讨了该算法的优缺点和典型应用场景,如推荐系统、图像识别等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、k-近邻算法介绍

        K-近邻算法(K-Nearest Neighbors,简称KNN)是一种基本且广泛使用的监督学习算法,主要用于分类和回归问题。它是一种基于实例的学习或懒惰学习算法,因为其核心思想是在预测时才进行计算,而不是在训练阶段。

二、k-近邻算法原理概述

2.1算法原理

KNN算法的核心思想是“物以类聚”,即相似的事物倾向于聚集在一起。对于一个给定的数据点,算法会找到训练数据集中与其最相似的K个邻居。这里的“相似”是通过某种距离度量(如欧氏距离)来定义的。然后,算法根据这K个邻居的标签来预测数据点的标签。

2.2算法步骤

  1. 确定参数K的值:K代表的是邻居的数量,即一个未知样本周围距离最近的K个已知样本。

  2. 计算距离:计算未知样本与所有已知样本之间的距离。常用的距离计算方法包括欧氏距离、曼哈顿距离和明可夫斯基距离等。

  3. 找到最近的K个邻居:根据计算出的距离,确定距离最近的K个样本,这些样本的类别已知。

  4. 进行投票:在分类任务中,K个最近邻居中出现次数最多的类别将被认为是未知样本的类别。在回归任务中,通常是取这K个最近邻居的输出的平均值作为预测值。

  5. 输出预测结果:根据上述投票或平均值,输出最终的预测结果。

2.3距离计算

  1. 欧氏距离(Euclidean Distance)

    • 最常用的距离度量方法,适用于多维空间中的直线距离计算。
    • 计算公式为:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值