概述
这份国家标准(GB/T 45288.1 - 2025)聚焦人工智能大模型,以通俗视角可理解为给大模型从开发到应用全流程 “立规矩”,下面从几个关键方面来详细说说:
1、大模型的定义与定位
大模型是基于海量数据训练而成,拥有复杂计算架构,能处理复杂任务且具备一定泛化能力的深度学习模型,一般参数量不低于 1 亿。它在人工智能发展中是重要技术手段,可引领产业变革,而该标准旨在让用户能有效评价人工智能产品的技术水平和服务能力。
2、大模型的 “骨架”:参考架构
从功能视角看,大模型的参考架构就像一个有机整体,包含多个关键部分:
- 资源池:是大模型运行的硬件和软件基础,有计算资源(如 CPU、GPU 等)、存储资源、网络资源,还有负责资源管理的虚拟化及调度。
- 工具:分为数据工具和模型工具,数据工具用于数据采集、准备、存储和管理等;模型工具用于模型设计、训练、优化、验证以及部署与推理。
- 数据资源:包括通用数据、领域数据和私有数据,这些数据都要符合隐私保护法规,且有各自的特点和要求。
- 模型:有基础大模型(分单模态和多模态)和定制化大模型,基础大模型具备相应的理解和生成能力,定制化大模型是基于基础大模型微调而来。
- 行业应用:要让大模型在各行业场景发挥作用,为用户提供下游任务匹配服务。
- 服务平台 / 组件:贯穿各层次,提供支持大模型和相关服务的编排、部署、推理、运维和管理等功能。
3、大模型的 “硬性指标”:通用要求
- 资源池要求:
- 计算资源:要能执行至少一种模态的模型训练或推理,具备人工智能计算硬件加速功能等,像训练服务器有网口、电源模块等方面的要求,推理服务器在内存带宽、PCIe 扩展槽位等方面也有规定。
- 存储资源:需具备分布式存储与访问、冗余备份等功能,对存储带宽、IOPS 等也有一定要求。
- 网络资源:要适配高速网络通信协议,具备负载均衡等功能,还有可靠性组网等要求。
- 虚拟化及调度:需符合相关国家标准。
- 工具要求:
- 数据工具:数据采集工具要能设定采集任务、采集多种数据等;数据准备工具要符合数据标注流程,具备清洗、重组等功能;数据存储工具要有分布式存储等功能;数据管理工具要能管理数据集要素、操作数据集等。
- 模型工具:模型设计工具要提供预定义模型元素等;模型训练工具要具备分布式训练等能力;模型优化工具要能进行模型压缩、微调等;模型验证工具要能评估大模型功能效果等;模型部署与推理工具要能提供多种部署功能等。
- 数据资源要求:通用数据要来源多样、高质量等;领域数据要具备领域特征;私有数据要符合隐私保护法规,数据所有者要有控制权。
- 模型要求:基础大模型的单模态和多模态分别有相应的理解和生成能力要求;定制化大模型要有至少两种微调方法,并提供运营大模型库。
- 行业应用要求:每种大模型(如自然语言处理、计算机视觉、多模态等)至少要匹配 2 个下游任务。
- 服务平台 / 组件要求:要具备插件开发、部署服务升级回滚、计算资源弹性伸缩等功能。
4、总结
简单来说,这份标准就是为了让大模型从 “出生”(开发)到 “工作”(应用)都有章可循,确保其技术规范、功能达标,能在各行业更好地发挥作用。