基于yolov8pose的人体姿态检测识别【计算机视觉实训大作业】

基于yolov8pose的人体姿态检测识别

[摘 要] 本文介绍了一种用于人体姿态估计的高效卷积神经网络架构 YOLOv8-Pose。该网络针对实时推理进行了优化,尤其适用于PC端,并能高效地为人体生成关键点,支持多种姿态估计任务。YOLOv8-Pose具有快速的推理速度,能够在不同硬件平台上达到良好的性能,适合用于健身追踪、行为识别、手语翻译等实时应用。本文的主要贡献包括提出了一种基于YOLOv8框架的创新性姿态估计模型,能够通过单一网络同时进行物体检测与姿态估计。此外,该网络在设计上充分考虑了高效性与准确性,通过结合卷积特征提取与回归方法,实现了人体关键点的精确定位。YOLOv8-Pose兼具高效性与实时性,是一个适合部署在资源受限设备上的姿态估计解决方案。

[关键字] 人体姿态估计,yolov8pose,视频检测,卷积神经网络

在这里插入图片描述

在这里插入图片描述

作品展示

在这里插入图片描述

在这里插入图片描述

图6 coco2017训练准确率
在这里插入图片描述

图7 lsp训练集准确率
在这里插入图片描述

图8人体姿态识别热力图统计
在这里插入图片描述

图9 人体姿势图片识别
在这里插入图片描述

图10 Blazepose模型识别标记
在这里插入图片描述

图11 OLOv8pose模型识别标记

微信关注公众号,即可获取报告+代码地址。

### 使用YOLOv8实现人体姿态检测 #### 准备工作 为了使用YOLOv8进行人体姿态检测,需先安装必要的库和下载对应的模型权重文件。可以采用如下命令完成环境搭建: 对于Python环境中,推荐创建虚拟环境以隔离依赖项。 ```bash pip install ultralytics # 安装ultralytics包,这是官方维护的YOLOv8 Python接口 ``` 接着,加载预训练好的模型权重文件,这里提供了一系列不同规模大小的模型供选择,比如`YOLOv8n-pose`, `YOLOv8s-pose`, `YOLOv8m-pose`, `YOLOv8l-pose`, 和 `YOLOv8x-pose`[^1]。 #### 加载模型与预测 下面是一段简单的代码片段用于展示如何加载YOLOv8姿态估计模型并对图像执行推理操作: ```python from ultralytics import YOLO # 初始化指定版本的YOLOv8姿态估计算法实例 model = YOLO('yolov8n-pose.pt') # 对单张图片路径或numpy数组形式的数据做推断 results = model.predict(source='path/to/image.jpg', save=True) for result in results: boxes = result.boxes.cpu().numpy() # 获取边界框坐标 keypoints = result.keypoints.cpu().numpy() # 提取关键点位置信息 print(boxes, keypoints) ``` 这段脚本展示了怎样调用`predict()`方法来进行前向传播,并获取到每帧画面里人物的关键部位坐标集合。这些坐标可用于进一步分析人的姿势状态,如判断是否处于坐着、站着或是摔倒的状态[^2]。 #### 训练自定义数据集 如果想要基于特定场景下的新数据集微调现有模型,则可参照相关文档说明调整配置参数并启动训练过程。通常涉及修改锚点尺寸、类别数量等超参设置;同时准备好标注好关键点坐标的训练样本即可开始迭代优化流程[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大华Coding

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值