Pinely Round 2 F. Divide, XOR, and Conquer

本文介绍了一种使用动态规划(DP)解决非负整数数组区间划分问题的方法,通过分析异或和的性质,优化了时间复杂度至O(n^2),主要关注如何通过区间转移和异或操作达到目标数组仅保留一个元素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

F. Divide, XOR, and Conquer

F

题意

给定一个非负整数数组 aaa,定义操作:

  • 对于区间 [l,r][l,r][l,r],选择一个分界点 l≤k<rl \leq k < rlk<r,将其分成 [l,k][l,k][l,k][k+1,r][k + 1, r][k+1,r] 两部分,然后留下异或和更大的那一部分,丢弃小的那部分。如果异或和一样,可以随意选择留下哪部分。

问对于 ∀i∈[1,n]\forall i \in [1,n]i[1,n],能否从一开始的数组到只留下 aia_iai,即 l=r=il = r = il=r=i

思路

这里比较明显的是区间的转移,可以考虑用区间 DPDPDP 来解决。对于当前的区间 [l,r][l,r][l,r],我们定义左边部分的异或和为 s1s_1s1,右边部分的异或和为 s2s_2s2,显然要能够实现 [l,k][l,k][l,k],必须有 s1≥s2s_1 \geq s_2s1s2

如果我们直接采用传统区间 DPDPDP 的方法,枚举每一个长度的区间的分界点,时间复杂度会到达 O(n3)O(n^3)O(n3),记录状态的空间复杂度也过高。

进一步观察发现:

  • [l,r][l,r][l,r] 区间的异或和为 ssss=0s = 0s=0 的话,有 s=s1⨁s2=0s = s_1 \bigoplus s_2 = 0s=s1s2=0,即 s1=s2s_1 = s_2s1=s2 ,这时候我们区间的分界点可以任选,也就是说可以从区间 [l,r][l,r][l,r] 转移到任何从 lll 开始的或者到 rrr 结束的长度小于 r−l+1r - l + 1rl+1 的区间。
  • s≠0s \neq 0s=0,我们只能留下异或和更大的那个部分,如果 sss最高位bitbitbit 的话,(假设 s1>s2s_1 > s_2s1>s2) 我们容易发现在 bitbitbit 这一位一定是 s1[bit]=1,s2[bit]=0s_1[bit] = 1,s_2[bit] = 0s1[bit]=1,s2[bit]=0,这样子 s1s_1s1 才会大于 s2s_2s2。所以对于那些 从 lll 开始的或者到 rrr 结束的长度小于 r−l+1r - l + 1rl+1 的区间,如果它们的异或和的最高位也是 bitbitbit 的话,那么就可以从 [l,r][l,r][l,r] 转移到这些区间!

我们如果按照区间长度从大到小枚举区间,对于当前枚举的区间 [l,r][l,r][l,r],如果它可达的话,
可以对于区间端点维护四种信息:

  • st[l]st[l]st[l] 表示从 lll 开始的任意长度更短区间,如果它们要可达,异或和最高位必须存在于st[l]st[l]st[l] 里。
  • ed[r]ed[r]ed[r] 则表示到 rrr 结束的任意长度更短区间,如果它们要可达,异或和最高位必须存在于st[l]st[l]st[l] 里。
  • st0[l]st0[l]st0[l]ed0[r]ed0[r]ed0[r] 则表示是否存在长度更大的区间异或和为 000 ,可以转移到这些端点的更小区间。

对于当前区间 [l,r][l,r][l,r] 的最高位 bitbitbit ,如果它可达

  • 如果 s=0s = 0s=0,那么后续任意长度更小的从 lll 开始的或者到 rrr 结束的区间都可达(从[l,r][l,r][l,r]转移过去),这时我们记录 st0[l]=ed0[r]=truest0[l] = ed0[r] = truest0[l]=ed0[r]=true
  • 如果 s≠0s \neq 0s=0, 那么我们在 st[l]st[l]st[l]ed[r]ed[r]ed[r] 加上 bitbitbit 的标记,表示后续更短的从 lll 开始的或者到 rrr 结束的区间的 maskmaskmask,如果它们的异或和 s′∧mask>0s\prime \wedge mask > 0smask>0,则说明它们可以从某个更长的区间转移过来,因为这个区间的异或和 s′s\primes 的最高位 和 某个sss 重合

最终时间复杂度:O(n2)O(n^2)O(n2)

#include<bits/stdc++.h>
#define fore(i,l,r)	for(int i=(int)(l);i<(int)(r);++i)
#define fi first
#define se second
#define endl '\n'
#define ull unsigned long long
#define ALL(v) v.begin(), v.end()
#define Debug(x, ed) std::cerr << #x << " = " << x << ed;

const int INF=0x3f3f3f3f;
const long long INFLL=1e18;

typedef long long ll;

int main(){
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    std::cout.tie(nullptr);
    int t;
    std::cin >> t;
    while(t--){
        int n;
        std::cin >> n;
        std::vector<ll> a(n + 1);
        std::vector<ll> st(n + 1, 0), ed(n + 1, 0);
        std::vector<bool> st0(n + 1, false), ed0(n + 1, false);
        std::vector<ll> sum(n + 1, 0);
        fore(i, 1, n + 1){
            std::cin >> a[i];
            sum[i] = sum[i - 1] ^ a[i];
        }
        std::vector<int> ans(n + 1, 0);
        for(int len = n; len >= 1; --len)
            fore(L, 1, n - len + 2){
                int R = L + len - 1;
                ll s = sum[R] ^ sum[L - 1];
                ll bit = 1ll << std::__lg(s);
                if(len == n || st0[L] || ed0[R] || (s & st[L]) || (s & ed[R])){
                    if(len == 1) ans[L] = 1;
                    if(!s) st0[L] = ed0[R] = true;
                    else{
                        st[L] |= bit;
                        ed[R] |= bit;
                    }
                }
            }
        fore(i, 1, n + 1) std::cout << ans[i];
        std::cout << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值