2024牛客暑期多校训练营1 D. XOR of Suffix Sums 【树状数组、思维】

XOR of Suffix Sums

题意

有一个初始为空的序列 aaa,有 qqq 次操作,每次操作 (t,v)(t, v)(t,v) 会将 aaa 的最后 ttt 个数字删除,并将元素 vvv 添加到 aaa 的末尾

对于每次操作完后的数组 aaa,输出其每一个位置的后缀和异或和
s1⨁s2⨁...⨁sns_1 \bigoplus s_2 \bigoplus ... \bigoplus s_ns1s2...sn,答案对 2212^{21}221 取模

思路

记当前序列为 a1,a2,...,ana_1, a_2, ..., a_na1,a2,...,an,定义一个前缀和数组 ppp,我们注意到:在操作过程中,只有后缀一直在变化,而前缀和保持不变。因此我们把后缀转为前缀,这样子就可以快速修改信息

对于一个后缀 [i,n][i, n][i,n],其值即为 pn−pi−1p_n - p_{i - 1}pnpi1,即 pn+(−pi−1)p_n + (-p_{i - 1})pn+(pi1)
我们可以分别计算答案的每一位,由于答案对 2212^{21}221 取模,因此只有低 212121 位有效。
对于当前位 b(0≤b<21)b( 0 \leq b < 21)b(0b<21),我们只需要统计是否有奇数个后缀和满足这一位为 111即可
注意到 ∀i∈[1,n],    pn+(−pi−1)\forall i \in [1, n], \;\; p_n + (-p_{i - 1})i[1,n],pn+(pi1) 的第一个变量是不变的,变化的只有后面那个变量

如何统计?
我们通过取模转换一下值域,即要求 pn+(−pi−1)mod  2b+1≥2bp_n + (-p_{i - 1}) \mod 2^{b+1} \geq 2^bpn+(pi1)mod2b+12biii 的数量
不难发现,通过上述转换,值域变得很小,我们就可以在树状数组上快速查询满足条件的 −pi−1-p_{i - 1}pi1 数量

我们之前已经插入了 (−p0mod  2b+1)→(−pn−1mod  2b+1)(-p_0 \mod 2^{b + 1}) \rarr (-p_{n - 1} \mod 2^{b + 1})(p0mod2b+1)(pn1mod2b+1),而我们现在需要求出一个区间,使得 pnmod  2b+1p_n \mod 2^{b + 1}pnmod2b+1 加上这个区间内任何一个数后,最终值会落在 [2b,2b+1−1][2^b, 2^{b + 1} - 1][2b,2b+11] 内,其实这可以利用取模的性质(周期性)来计算了。
只需要分两种情况考虑一下即可

时间复杂度:O(nlog⁡2Mod+Mod)O(n \log^2 Mod + Mod)O(nlog2Mod+Mod)

#include<bits/stdc++.h>
#define fore(i,l,r)	for(int i=(int)(l);i<(int)(r);++i)
#define fi first
#define se second
#define endl '\n'
#define ull unsigned long long
#define ALL(v) v.begin(), v.end()
#define Debug(x, ed) std::cerr << #x << " = " << x << ed;

const int INF=0x3f3f3f3f;
const long long INFLL=1e18;

typedef long long ll;

struct FenWick{
    std::vector<int> fen;
    int n;

    void init(int n){
        fen.assign(n + 5, 0);
        this -> n = n;
    }

    void update(int p, int d){
        for(int i = p; i <= n; i += i & -i)
            fen[i] += d;
    }

    int query(int p){
        int res = 0;
        while(p > 0){
            res += fen[p];
            p -= p & -p;
        }
        return res;
    }
};

const int N = 500005;
const int B = 21;
const int D = 1; //偏移量,由于值域包括0

FenWick Fen[B];
ll p[N];

void update(ll x, int d){
    fore(b, 0, B){
        int val = x & ((1 << b + 1) - 1);
        Fen[b].update(val + D, d);
    }
}

int query(ll x, int n){
    int res = 0;
    fore(b, 0, B){
        int val = x & ((1 << b + 1) - 1); //对 2 ^ (b + 1) 取模
        int cnt = 0;
        if(val <= (1 << b)) 
            cnt = Fen[b].query(D + (1 << b + 1) - 1 - val) - Fen[b].query(D + (1 << b) - val - 1);
        else
            cnt = n - Fen[b].query(D + (3 << b) - 1 - val) - Fen[b].query(D + (2 << b) - val - 1);

        if(cnt & 1) res += 1 << b; //这一位是奇数
    }
    return res;
}

int main(){
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    std::cout.tie(nullptr);

    fore(b, 0, B) Fen[b].init(1 << b + 1);

    int n = 0, q;
    std::cin >> q;
    while(q--){
        int t, v;
        std::cin >> t >> v;
        while(t--){
            update(-p[n - 1], -1);
            --n;
        }
        ++n;
        p[n] = p[n - 1] + v;
        update(-p[n - 1], 1);

        std::cout << query(p[n], n) << endl;
    }
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值