yolov5模型 训练,导出

 我使用的是yolov5 v7.0

github开源地址:ultralytics/yolov5 at v7.0

官方说明书:

Quickstart - Ultralytics YOLO Docs

教学视频:

【目标检测 YOLOv5 开源代码项目调试与讲解实战【土堆 x 布尔艺数】】https://www.bilibili.com/video/BV1tf4y1t7ru?vd_source=342079de7c07f82982956aad8662b467 

小土堆Pytorch笔记_failed to fetch runs-CSDN博客

打标

标注工具:

Make Sense

自训练数据集打标签注意事项及使用工具推荐_怎么给数据集打标签-CSDN博客 

<think>好的,用户想了解YoloV5模型训练步骤教程。首先,我需要根据提供的引用内容来整理相关信息。引用[2]提到了数据准备、超参数选择和模型调优,这是训练的基本步骤。引用[1]提到模型配置,需要选择合适的预训练模型,比如Yolov5s、m、l、x。引用[3]则涉及训练后的结果查看,使用tensorboard。 接下来,我需要将这些信息结构化,分步骤说明训练流程。第一步应该是数据准备,包括数据集格式转换和划分。YOLOv5通常使用YOLO格式,所以可能需要将其他格式如COCO或VOC转成txt标注文件。然后划分训练集、验证集和测试集。 第二步是环境配置,用户需要安装必要的依赖,比如PyTorch和YOLOv5的库。克隆官方仓库并安装requirements.txt里的依赖很重要。 第三步是模型选择,根据任务需求选择不同的预训练模型,比如小模型速度快但精度可能低,大模型反之。引用[1]提到这一点,需要强调根据实际需求选择。 第四步是配置训练参数,修改yaml文件,设置类别数、学习率、批次大小等。引用[2]提到超参数选择,这里要具体说明哪些参数需要调整。 第五步是启动训练,运行训练命令,并监控训练过程。引用[3]提到使用tensorboard查看训练结果,需要指导用户如何启动tensorboard。 第六步是模型验证,训练完成后用验证集评估指标,比如mAP。最后是模型导出,转换为不同格式以便部署。 可能还需要注意数据增强的配置,比如是否启用Mosaic增强,以及早停机制来防止过拟合。用户可能关心如何调参优化模型性能,比如调整学习率策略或更换优化器。此外,应用场景如目标检测的具体例子可以增强实用性。 需要检查是否有遗漏的步骤,比如数据预处理的具体操作,或者训练中的常见问题解决方法。可能用户会遇到CUDA内存不足,这时候需要调整批次大小。或者数据路径配置错误,导致训练无法开始。 最后,生成相关问题时要围绕训练步骤、调优方法、应用场景和常见问题处理,帮助用户进一步深入学习。</think>### YOLOv5模型训练步骤教程 YOLOv5模型训练分为以下步骤,结合代码示例和参数配置进行说明: --- #### **1. 数据准备** - **数据集格式**:需转换为YOLO格式(每张图片对应一个`.txt`文件,内容为`类别 x_center y_center width height`,坐标归一化)。 ```python # 示例:将COCO格式转为YOLO格式 from pycocotools.coco import COCO import os coco = COCO("annotations/instances_train2017.json") for img_id in coco.getImgIds(): ann_ids = coco.getAnnIds(imgIds=img_id) annotations = coco.loadAnns(ann_ids) with open(f"labels/{img_id:012d}.txt", "w") as f: for ann in annotations: x, y, w, h = ann['bbox'] x_center = (x + w/2) / width y_center = (y + h/2) / height f.write(f"{ann['category_id']} {x_center} {y_center} {w/width} {h/height}\n") ``` - **数据集划分**:按比例划分训练集、验证集、测试集(通常为`8:1:1`)[^2]。 --- #### **2. 环境配置** 安装依赖库并克隆官方仓库: ```bash git clone https://github.com/ultralytics/yolov5 cd yolov5 pip install -r requirements.txt # 安装依赖 ``` --- #### **3. 模型选择** YOLOv5提供不同规模的预训练模型: | 模型 | 参数量 | 适用场景 | |---------|--------|-------------------| | YOLOv5s | 7.2M | 移动端/低算力设备 | | YOLOv5m | 21.2M | 平衡精度与速度 | | YOLOv5l | 46.5M | 高精度需求 | | YOLOv5x | 86.7M | 极致精度 | 通过代码指定模型: ```python # 加载预训练模型 import torch model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True) ``` --- #### **4. 配置训练参数** 修改`data/custom.yaml`: ```yaml # 数据集配置 train: ./data/train val: ./data/val nc: 80 # 类别数(根据实际修改) names: ["person", "car", ...] # 类别名称 ``` 修改`models/yolov5s.yaml`(调整`anchors`或`backbone`结构可选)。 --- #### **5. 启动训练** 运行训练命令: ```bash python train.py \ --img 640 \ # 输入图像尺寸 --batch 16 \ # 批次大小 --epochs 100 \ # 训练轮次 --data data/custom.yaml \ --cfg models/yolov5s.yaml \ --weights yolov5s.pt \ # 加载预训练权重 --name exp1 # 实验名称 ``` **关键参数说明**: - `--hyp data/hyps/hyp.scratch-low.yaml`:选择超参数配置文件 - `--rect`:启用矩形训练(优化显存) - `--cache`:缓存数据集加速训练 --- #### **6. 监控训练过程** 使用TensorBoard查看指标: ```bash tensorboard --logdir runs/train # 默认访问http://localhost:6006/ ``` 监控指标包括: - 损失函数(Box Loss, Cls Loss) - mAP@0.5 - 学习率变化[^3] --- #### **7. 模型验证与导出** - **验证性能**: ```bash python val.py --weights runs/train/exp1/weights/best.pt --data data/custom.yaml ``` - **导出为ONNX格式**: ```bash python export.py --weights best.pt --include onnx ``` --- #### **调优建议** 1. **数据增强**:在`hyp.yaml`中调整`hsv_h`, `hsv_s`, `hsv_v`等参数增强图像多样性。 2. **学习率策略**:使用`--cos-lr`启用余弦退火学习率。 3. **早停机制**:添加`--patience 50`在验证损失无改善时提前终止训练。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Fitz&

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值