【OpenCV——python】形态学变换 颜色空间 颜色替换 掩膜 旋转

形态学变换

形态学变换一般是处理二值图的腐蚀和膨胀操作,输入二值化图像和核,对图像进行类似卷积的操作

    • 核是一定大小的区域,在原图中进行滑动计算
  • 腐蚀erode

    腐蚀过程

    • 核在图像上滑动,对应位置相乘,最小值作为核中心点的像素值,二值图像为0和1,所有只要核内有0的值,整合核大小位置都会变为0(黑)。全为1才会变白
    • 作用:
      • 腐蚀后的效果是白色部分变细,可以过滤白色的噪点。细化连续的前景区域
    # 腐蚀  黑色变大
    img = cv2.imread('./media/da.png',cv2.IMREAD_GRAYSCALE)
    _,img1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY_INV)  
    # 二值化为黑底的图片
    kernel = np.ones((3,3),dtype=np.uint8)  # 核
    img2 = cv2.erode(img1,kernel,iterations=2)  # iterations腐蚀操作的次数
    # cv2.imshow('img',img)
    cv2.imshow('img1',img1)
    cv2.imshow('img2',img2)
    cv2.waitKey(0)
    

在这里插入图片描述

  • 膨胀dilate

    膨胀和腐蚀相反

    • 核在图像上滑动,对应位置相乘,最大值作为核中心点的像素值,二值图像为0和1,所有只要核内有1的值,整个核大小位置都会变为1(白)。全为0才会变黑
    • 作用:
      • 可以扩大目标的物体边界,连接断裂的前景部分,填补空洞
    #  膨胀
    img = cv2.imread('./media/da.png',cv2.IMREAD_GRAYSCALE)
    _,img1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY_INV)
    kernel = np.ones((3,3),dtype=np.uint8)  # 核
    img2 = cv2.dilate(img1,kernel,iterations=2)
    # cv2.imshow('img',img)
    cv2.imshow('img1',img1)
    cv2.imshow('img2',img2)
    cv2.waitKey(0)
    

在这里插入图片描述

  • 开运算

    • 先腐蚀,后膨胀
    • 作用:
      • 分离物体,消除噪点,去除一些小的干扰块
    # 开操作
    img = cv2.imread('./media/da2.png',cv2.IMREAD_GRAYSCALE)
    _,img1 = cv2.threshold(img
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值