机器学习之K折交叉验证

K折交叉验证是一种评估机器学习模型性能的技术,通过将数据集分成k个子集进行多次训练和验证。每个样本都被用于验证一次,减少过拟合风险,全面评估模型性能。注意选择合适的k值,确保数据分布均匀,同时考虑计算开销。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

k折交叉验证(k-fold cross-validation)是一种用于评估机器学习模型性能的技术。它将数据集分成k个折(或称为“块”或“子集”),然后进行k次模型训练和验证,每次使用其中一个折作为验证集,其余的k-1个折作为训练集。这种过程有助于更全面地评估模型的性能,特别是在数据集较小的情况下。

k折交叉验证的步骤:

  1. 数据分割:

    • 将原始数据集分成k个子集。
  2. 模型训练和验证:

    • 对于每次迭代,选择其中一个子集作为验证集,其余k-1个子集作为训练集。
    • 使用训练集训练模型,并在验证集上评估模型性能。
  3. 重复:

    • 重复这个过程k次,每次选择一个不同的子集作为验证集。
  4. 性能度量:

    • 对于每次迭代,记录模型在验证集上的性能度量,例如准确率、精确度、召回率、F1分数等。
  5. 性能评估:

    • 计算k次迭代的性能度量的平均值,作为模型的最终性能评估。

优点:

  • 全面评估: 所有数据都被用于训练和验证,每个样本都被用于验证一次,有助于更全面地评估模型的性能。

  • 减少过拟合: 由于多次训练和验证,有助于减少模型在特定数据集上的过拟合风险。

注意事项:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值