Numpy是一个通用的数组处理包。它提供了一个高性能的多维数组对象,以及用于处理这些数组的工具。它是使用 Python 进行科学计算的基础包。
除了其明显的科学用途外,Numpy 还可以用作通用数据的高效多维容器。
Numpy 中的数组
Numpy 中的数组是一个元素表(通常是数字),所有元素类型相同,由正整数元组索引。在 Numpy 中,数组的维数称为数组的秩。给出数组沿每个维的大小的整数元组称为数组的形状。Numpy 中的数组类称为ndarray。Numpy 数组中的元素可以使用方括号访问,并且可以使用嵌套的 Python 列表进行初始化。
创建 Numpy 数组 Numpy
中的数组可以通过多种方式创建,具有不同数量的 Rank,定义数组的大小。数组也可以使用各种数据类型来创建,例如列表、元组等。结果数组的类型是从序列中元素的类型推导出来的。
注意: 数组的类型可以在创建数组时显式定义。
# 用于创建数组的 Python 程序
import numpy as np
# 创建 rank 1 数组
arr = np.array([1, 2, 3])
print("Array with Rank 1: \n",arr)
# 创建 rank 2 数组
arr = np.array([[1, 2, 3],
[4, 5, 6]])
print("Array with Rank 2: \n", arr)
# 从元组创建数组
arr = np.array((1, 3, 2))
print("\nArray created using "
"passed tuple:\n", arr)
输出:
Array with Rank 1:
[1 2 3]
Array with Rank 2:
[[1 2 3]
[4 5 6]]
Array created using passed