python中Pandas的简单实例应用/resample函数/pivot_table函数/时间序列/使用数据透视和重采样从股指成分股进出记录得到月频的股指成分股数据

1.介绍

给出一个金融数据分析常见的实例来讲解pandas中resample函数和pivot_table的应用:

拿红利指数的成分进出记录举例,假设现在有一个股票指数的Excel包含了该指数从编撰以来成分股的进出记录,读成datafram如下:

import pandas as pd #导入需要使用的模块
import numpy as np
from datetime import datetime
df=pd.read_excel('上证红利指数-成分进出记录.xlsx') #读取excel

现在想要得到一个datafram,行(rows)为可能包含的成分股代码,列(columns)为自编撰该指数以来的月频日期,值(values)为0和1,分别代表对应日期下对应股票是否为该指数成分股,0代表不是,1代表是,结果like this~

该怎么操作?这个问题用两个主要函数pivot_table和resample就可以解决,下面给出步骤

2.pivot_table()

先简单说明pivot_table()函数的用法和结果,pivot_table()函数和excel里的数据透视比较像,直白理解就是转换数据视角,比如就拿本文中的原始数据df举例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值