1.介绍
给出一个金融数据分析常见的实例来讲解pandas中resample函数和pivot_table的应用:
拿红利指数的成分进出记录举例,假设现在有一个股票指数的Excel包含了该指数从编撰以来成分股的进出记录,读成datafram如下:
import pandas as pd #导入需要使用的模块
import numpy as np
from datetime import datetime
df=pd.read_excel('上证红利指数-成分进出记录.xlsx') #读取excel
现在想要得到一个datafram,行(rows)为可能包含的成分股代码,列(columns)为自编撰该指数以来的月频日期,值(values)为0和1,分别代表对应日期下对应股票是否为该指数成分股,0代表不是,1代表是,结果like this~
该怎么操作?这个问题用两个主要函数pivot_table和resample就可以解决,下面给出步骤
2.pivot_table()
先简单说明pivot_table()函数的用法和结果,pivot_table()函数和excel里的数据透视比较像,直白理解就是转换数据视角,比如就拿本文中的原始数据df举例