DeepSeek 本地部署保姆级教程 最新教程

一、DeepSeek 简介

DeepSeek 是基于最新 Transformer 架构的代码理解与生成模型,主要特点包括:

  • 离线本地部署:所有模型与代码在本地运行,无需依赖第三方云服务,有效保护隐私和代码安全。

  • 多语言支持:对 Python、JavaScript、Java、C++、Go 等主流编程语言均有卓越理解与生成能力。

  • 插件化扩展:提供 API 接口与命令行工具,并支持 VS Code 等 IDE 插件,快速集成到日常开发流程。

  • 开源免费:遵循 MIT 许可证,社区活跃,文档齐全,可根据需求自行二次开发和定制。


二、环境准备

在开始之前,请确保本地机器满足以下要求:

  1. 操作系统

    • Linux(推荐 Ubuntu 20.04+)

    • macOS(10.15+)

    • Windows 10/11(需启用 WSL2)

  2. 硬件配置

    • CPU:4 核及以上

    • 内存:16 GB 及以上

    • 显卡(可选,推荐 NVIDIA GPU,CUDA 11.6+)

    • 存储:至少 10 GB 可用空间

  3. 软件依赖

    • Python 3.8+

    • Git

    • Docker(可选,用于容器化部署)

    • NVIDIA 驱动与 CUDA Toolkit(如需 GPU 加速)


三、本地部署步骤

1. 获取 DeepSeek 源码或镜像

方式 A:通过 Git 克隆源码

git clone https://github.com/deepseek-ai/deepseek.git
cd deepseek

方式 B:使用官方 Docker 镜像

docker pull deepseek/deepseek:latest

2. 安装 Python 依赖

若采用源码方式,激活虚拟环境并安装依赖:

python3 -m venv venv
source venv/bin/activate
pip install --upgrade pip
pip install -r requirements.txt

Docker 容器内已预装依赖,可跳过此步。

3. 下载模型权重

DeepSeek 支持多种规模的模型权重,按需选择并下载:

# 示例:下载 Medium 模型
bash scripts/download_weights.sh --model medium

提示:模型文件较大,请确保网络稳定,并预留充足磁盘空间。

4. 启动 DeepSeek 服务

源码方式启动
# 在虚拟环境中运行
python deepseek/server.py \
  --host 0.0.0.0 \
  --port 5000 \
  --model-path ./weights/medium \
  --log-level info
Docker 方式启动
docker run -d --gpus all \
  -p 5000:5000 \
  -v /本地/weights:/app/weights \
  deepseek/deepseek:latest \
  python server.py --model-path /app/weights/medium

检查:启动后,访问 http://localhost:5000/health,若返回 {"status":"ok"} 即表示服务可用。


四、客户端接入

DeepSeek 提供丰富的客户端接入方式:

  1. 命令行工具

    deepseek-cli \
      --host localhost \
      --port 5000 \
      complete \
      --language python \
      --prompt "实现一个快速排序函数"
    
  2. RESTful API

    POST http://localhost:5000/api/v1/complete
    Content-Type: application/json
    
    {
      "language": "javascript",
      "prompt": "写一个合并两个数组的函数"
    }
    
  3. VS Code 插件

    • 在 VS Code 市场搜索 “DeepSeek”

    • 安装后,在设置中填入本地服务地址 http://localhost:5000

    • 选中代码片段,按下快捷键即可获得智能补全与函数生成建议


五、使用示例

以 Python 快速排序为例,演示 DeepSeek 的调用与结果:

deepseek-cli complete \
  --language python \
  --prompt "请实现一个快速排序(Quicksort)函数"

返回示例

def quicksort(arr):
    if len(arr) <= 1:
        return arr
    pivot = arr[len(arr) // 2]
    left = [x for x in arr if x < pivot]
    middle = [x for x in arr if x == pivot]
    right = [x for x in arr if x > pivot]
    return quicksort(left) + middle + quicksort(right)

六、高级配置与性能优化

  1. 多模型热切换

    • 编辑配置文件 config.yaml,添加多个模型路径

    • 调用时指定 --model small|medium|large 实现按需切换

  2. GPU 加速

    • 确保已安装 NVIDIA 驱动及 CUDA

    • 启动时添加参数 --device cuda 即可启用 GPU 推理

  3. 并发与限流

    • 配置 gunicornuvicorn 并发工作进程

    • 在生产环境中推荐使用反向代理(如 Nginx)进行限流与负载均衡


七、常见问题排查

问题描述解决方案
服务启动失败,提示端口被占用修改 --port 参数,或使用 lsof -i:5000 查找并释放占用进程
权重下载卡住或失败尝试更换网络,或手动从 官方镜像站 下载
API 响应慢检查是否启用了 GPU,加大 batch size,或升级硬件
VS Code 插件无法连接确认服务地址与端口正确,检查本地防火墙设置

八、总结

通过本文的“保姆级”教程,你已经掌握了 DeepSeek 从源码/镜像获取、依赖安装、模型下载到服务启动、客户端接入、性能优化的全流程操作。借助本地部署的 DeepSeek,你可以在保障数据隐私安全的同时,随时享受 AI 助手带来的编程自由与效率提升。赶紧动手部署,体验 AI 编程的无限可能吧!


声明:本文所述操作均基于 DeepSeek 官方开源项目,遵循 MIT 许可证。如有更多功能需求或疑问,欢迎访问 DeepSeek 仓库及社区讨论。

### DeepSeek 本地部署详细教程 #### 创建 Python 虚拟环境并激活 为了确保项目的独立性和兼容性,建议创建一个新的虚拟环境来安装所需的Python包。对于Conda用户来说,可以通过下面的命令完成此操作: ```bash conda create -n deepseek python=3.10 conda activate deepseek ``` 而对于偏好使用`venv`模块的人来说,则应执行如下指令[^2]: ```bash python3 -m venv deepseek-env source deepseek-env/bin/activate # 对于Linux/MacOS系统 # 或者,在Windows上运行: deepseek-env\Scripts\activate ``` #### 安装必要的软件包 一旦进入了新建立好的虚拟环境中之后,下一步就是按照官方文档指示去安装项目所需的核心库和其他依赖项。 对于通过Conda管理环境的情况而言,这一步骤通常涉及到了解哪些特定版本的库适合当前使用的Python解释器,并利用pip工具来进行实际安装过程[^1];而针对基于`venv`的方式,则直接从PyPI仓库获取最新稳定版的依赖文件即可。 #### 下载指定模型版本 如果计划使用不同大小参数量(比如8B, 14B, 和32B)预训练过的DeepSeek模型之一作为起点的话,那么可以根据需求选择合适的镜像标签名并通过Docker容器平台启动对应的服务实例[^3]: ```bash ollama run deepseek-r1:8b # 部署较小规模的语言理解模型 ollama run deepseek-r1:14b # 中等规模的选择 ollama run deepseek-r1:32b # 大型配置下的性能优化选项 ``` 最后不要忘记启动Ollama服务以便能够正常访问所加载的模型资源。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值