一、DeepSeek 简介
DeepSeek 是基于最新 Transformer 架构的代码理解与生成模型,主要特点包括:
-
离线本地部署:所有模型与代码在本地运行,无需依赖第三方云服务,有效保护隐私和代码安全。
-
多语言支持:对 Python、JavaScript、Java、C++、Go 等主流编程语言均有卓越理解与生成能力。
-
插件化扩展:提供 API 接口与命令行工具,并支持 VS Code 等 IDE 插件,快速集成到日常开发流程。
-
开源免费:遵循 MIT 许可证,社区活跃,文档齐全,可根据需求自行二次开发和定制。
二、环境准备
在开始之前,请确保本地机器满足以下要求:
-
操作系统
-
Linux(推荐 Ubuntu 20.04+)
-
macOS(10.15+)
-
Windows 10/11(需启用 WSL2)
-
-
硬件配置
-
CPU:4 核及以上
-
内存:16 GB 及以上
-
显卡(可选,推荐 NVIDIA GPU,CUDA 11.6+)
-
存储:至少 10 GB 可用空间
-
-
软件依赖
-
Python 3.8+
-
Git
-
Docker(可选,用于容器化部署)
-
NVIDIA 驱动与 CUDA Toolkit(如需 GPU 加速)
-
三、本地部署步骤
1. 获取 DeepSeek 源码或镜像
方式 A:通过 Git 克隆源码
git clone https://github.com/deepseek-ai/deepseek.git
cd deepseek
方式 B:使用官方 Docker 镜像
docker pull deepseek/deepseek:latest
2. 安装 Python 依赖
若采用源码方式,激活虚拟环境并安装依赖:
python3 -m venv venv
source venv/bin/activate
pip install --upgrade pip
pip install -r requirements.txt
Docker 容器内已预装依赖,可跳过此步。
3. 下载模型权重
DeepSeek 支持多种规模的模型权重,按需选择并下载:
# 示例:下载 Medium 模型
bash scripts/download_weights.sh --model medium
提示:模型文件较大,请确保网络稳定,并预留充足磁盘空间。
4. 启动 DeepSeek 服务
源码方式启动
# 在虚拟环境中运行
python deepseek/server.py \
--host 0.0.0.0 \
--port 5000 \
--model-path ./weights/medium \
--log-level info
Docker 方式启动
docker run -d --gpus all \
-p 5000:5000 \
-v /本地/weights:/app/weights \
deepseek/deepseek:latest \
python server.py --model-path /app/weights/medium
检查:启动后,访问
http://localhost:5000/health
,若返回{"status":"ok"}
即表示服务可用。
四、客户端接入
DeepSeek 提供丰富的客户端接入方式:
-
命令行工具
deepseek-cli \ --host localhost \ --port 5000 \ complete \ --language python \ --prompt "实现一个快速排序函数"
-
RESTful API
POST http://localhost:5000/api/v1/complete Content-Type: application/json { "language": "javascript", "prompt": "写一个合并两个数组的函数" }
-
VS Code 插件
-
在 VS Code 市场搜索 “DeepSeek”
-
安装后,在设置中填入本地服务地址
http://localhost:5000
-
选中代码片段,按下快捷键即可获得智能补全与函数生成建议
-
五、使用示例
以 Python 快速排序为例,演示 DeepSeek 的调用与结果:
deepseek-cli complete \
--language python \
--prompt "请实现一个快速排序(Quicksort)函数"
返回示例:
def quicksort(arr):
if len(arr) <= 1:
return arr
pivot = arr[len(arr) // 2]
left = [x for x in arr if x < pivot]
middle = [x for x in arr if x == pivot]
right = [x for x in arr if x > pivot]
return quicksort(left) + middle + quicksort(right)
六、高级配置与性能优化
-
多模型热切换
-
编辑配置文件
config.yaml
,添加多个模型路径 -
调用时指定
--model small|medium|large
实现按需切换
-
-
GPU 加速
-
确保已安装 NVIDIA 驱动及 CUDA
-
启动时添加参数
--device cuda
即可启用 GPU 推理
-
-
并发与限流
-
配置
gunicorn
或uvicorn
并发工作进程 -
在生产环境中推荐使用反向代理(如 Nginx)进行限流与负载均衡
-
七、常见问题排查
问题描述 | 解决方案 |
---|---|
服务启动失败,提示端口被占用 | 修改 --port 参数,或使用 lsof -i:5000 查找并释放占用进程 |
权重下载卡住或失败 | 尝试更换网络,或手动从 官方镜像站 下载 |
API 响应慢 | 检查是否启用了 GPU,加大 batch size,或升级硬件 |
VS Code 插件无法连接 | 确认服务地址与端口正确,检查本地防火墙设置 |
八、总结
通过本文的“保姆级”教程,你已经掌握了 DeepSeek 从源码/镜像获取、依赖安装、模型下载到服务启动、客户端接入、性能优化的全流程操作。借助本地部署的 DeepSeek,你可以在保障数据隐私安全的同时,随时享受 AI 助手带来的编程自由与效率提升。赶紧动手部署,体验 AI 编程的无限可能吧!
声明:本文所述操作均基于 DeepSeek 官方开源项目,遵循 MIT 许可证。如有更多功能需求或疑问,欢迎访问 DeepSeek 仓库及社区讨论。