DP专题--B3637 最长上升子序列

本文介绍了一种使用C++实现的状态转移算法,用于计算数组中以第i个数为结尾的最长上升子序列的长度。通过递推和动态规划,代码展示了如何初始化和更新状态,以及找到最长上升子序列的结束位置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 状态表示:f [ i ]   以第 i 个数为结尾的最长上升子序列的长度

用 j 将 1  --  i -1 从前往后遍历,每个f [ i ] 初始化成1;是递增则触发判断

状态计算 : f [ i ] = max ( f [ i ] , f [ j- 1 ] + 1 )

#include <bits/stdc++.h>
using namespace std;

int a[5050];
int f[5050];

int main()
{
    int n;
    cin>>n;

    for(int i=1;i<=n;i++)cin>>a[i];

    //f[i]=max(f[1]+1,f[2]+1,...,f[i-1]+1)

    for(int i=1;i<=n;i++)
    {
        f[i]=1;//初始长度为1

        for(int j=1;j<i;j++)

        if(a[i]>a[j]) f[i]=max(f[i],f[j]+1);//得是递增才会触发判断
    }

    int k=1;

    for(int i=2;i<=n;i++)if(f[i]>f[k])k=i;

    cout<<f[k];

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Silver_Bullet14

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值