本任务为使用进阶的机器学习模型lightgbm解决本次问题,以达到更好的预测效果。
涉及的概念
随着大数据时代的到来,机器学习算法在处理海量数据、解决复杂问题上展现出巨大潜力。
其中,梯度提升决策树(Gradient Boosting Decision Trees, GBDT)作为一种集成学习方法,因其卓越的预测性能和泛化能力在诸多领域得到广泛应用。
然而,传统的GBDT算法在处理大规模数据、高维度特征时,往往面临训练效率低下、内存占用过大等问题。为应对这些挑战,微软亚洲研究院于2017年推出LightGBM(Light Gradient Boosting Machine),以其独特的设计和高效的实现,迅速成为业界广受欢迎的GBDT框架。
本次任务也将运用LightGBM来解决问题
1.配置LightGBM环境
!pip install lightgbm==3.3.0
2.导入库
import numpy as np
import pandas as pd
import lightgbm as lgb
from sklearn.metrics import mean_squared_log_error, mean_absolute_error, mean_squared_error
import tqdm
import sys
import os
import gc
import argparse
import warnings
warnings.filterwarnings('ignore')
NumPy :
- 提供支持大型多维数组和矩阵的高性能数学计算<