使用Python实现SVM来解决二分类问题

本文通过Python和Scikit-learn库展示如何使用SVM解决二分类问题,包括数据预处理、模型训练、预测以及决策边界可视化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

下面是一个使用Python实现SVM来解决二分类问题的例子:

# 导入所需的库
from sklearn.datasets import make_blobs
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
import matplotlib.pyplot as plt

# 生成一个二分类数据集
X, y = make_blobs(n_samples=100, centers=2, random_state=42)

# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建并训练SVM模型
svm = SVC(kernel='linear')
svm.fit(X_train, y_train)

# 在测试集上进行预测
y_pred = svm.predict(X_test)

# 绘制数据点和分隔超平面
plt.scatter(X[:, 0], X[:, 1], c=y, cmap='bwr')
ax = plt.gca()
xlim = ax.get_xlim()
ylim = ax.get_ylim()
xx = np.linspace(xlim[0], xlim[1], 30)
yy = np.linspace(ylim[0], ylim[1], 30)
YY, XX = np.meshgrid(yy, xx)
xy = np.vstack([XX.ravel(), YY.ravel()]).T
Z = svm.decision_function(xy).reshape(XX.shape)
ax.contour(XX, YY, Z, colors='k', levels=[-1, 0, 1], alpha=0.5,
               linestyles=['--', '-', '--'])
ax.scatter(svm.support_vectors_[:, 0], svm.support_vectors_[:, 1], s=100,
                   linewidth=1, facecolors='none', edgecolors='k')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.title('SVM Classifier')
plt.show()

在此示例中,我们使用make_blobs函数生成一个包含两个类别的二分类数据集。然后,我们使用train_test_split函数将数据集拆分为训练集和测试集。接下来,我们创建了一个SVC对象作为SVM模型,并使用fit方法对模型进行训练。然后,我们使用训练好的模型在测试集上进行预测,并将预测结果保存在y_pred变量中。

最后,我们使用Matplotlib库绘制数据点和分隔超平面。scatter函数用于绘制数据点,不同类别的点使用不同的颜色表示。decision_function方法用于计算分隔超平面,然后使用contour函数绘制分隔超平面。同时,我们还使用support_vectors_属性绘制了支持向量的圆圈表示。

请确保在运行代码之前安装所需的库(如scikit-learn和Matplotlib)。此代码可根据实际问题进行调整和扩展。

如果你想更深入地了解人工智能的其他方面,比如机器学习、深度学习、自然语言处理等等,也可以点击这个链接,我按照如下图所示的学习路线为大家整理了100多G的学习资源,基本涵盖了人工智能学习的所有内容,包括了目前人工智能领域最新顶会论文合集和丰富详细的项目实战资料,可以帮助你入门和进阶。

人工智能交流群(大量资料)
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

RRRRRoyal

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值