关于商店销售量的数据处理小问题(Python)

本文介绍了在Kaggle的StoreSales-TimeSeriesForecasting挑战中,如何利用Pandas进行数据处理,包括计算商品总销售量、筛选高销量商品、整合多个数据文件以及处理油价数据。主要步骤包括商品销售量排序、数据筛选、文件整合和分类,以及处理缺失值和空缺日期。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        通过学校举行的某次学科竞赛,我接触到了kaggle上的一道题:Store Sales - Time Series Forecasting。由于题主资质尚浅,本文将对前期数据处理的一些小问题做出解答,不涉及后续更难的问题。

        此处放原题链接:Store Sales - Time Series Forecasting

        题主也是看了很多的资料,也看到了CSDN上另外一位大佬写的文章,收获颇多,此处也放一下链接:Kaggle实战:Store Sales - Time Series Forecasting

        希望这位大佬不要介意呀~

本文提到并解决的一些问题:

1.得出各商品的总销售量并为商品种类排序

2.筛选,仅保留该sales文件中销售量前五名的商品类别

3.对各个文件的数据进行整合并保存

4.将这五类商品进行分类,另保存为文件并以商品类的名称命名

5.对油价的数据进行处理

6.得到每个类别单个日期的总销售量(即不区分商店编号),并附上每日油价和节日

        如图所示是一个各个日期下的,各个商店的,不同种类的商品的销售量数据(最后一列为该系列促销的项目数量,先不用管)。

        1.首先第一个小问题,那么如何得出各商品的总销售量并为商品种类排序?

         此时我们可以灵活运用pandas库,对该文件根据种类进行sum()相加处理并排序,并将结果转换为excel文件。

        下面上代码。

import pandas as pd

# 读取销售数据文件
sales_data = pd.read_csv(r'./Cdata/sales.csv')

# 假设 sales_data 是一个包含销售数据的 DataFrame
gr
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值