
大模型应用开发
文章平均质量分 97
L_cl
没有天赋,那就重复
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【大模型应用开发 4.RAG高级技术与实践】
Qwen-Agent是一个开发框架。充分利用基于通义千问模型(Qwen)的指令遵循、工具使用、规划、记忆能力。Qwen-AgentDashScope服务提供的Qwen模型服务支持通过OpenAI API方式接入开源的Qwen模型服务RagasRagas (Retrieval-Augmented Generation Assessment) 它是一个框架,它可以帮助我们来快速评估RAG系统的性能用户输入的问题。从 RAG 系统生成的答案(由LLM给出)。原创 2025-08-23 13:02:39 · 762 阅读 · 0 评论 -
【大模型应用开发 3.RAG技术应用与Faiss向量数据库】
Qwen-Agent是一个开发框架。充分利用基于通义千问模型(Qwen)的指令遵循、工具使用、规划、记忆能力。Qwen-Agent支持的模型形式:DashScope服务提供的Qwen模型服务支持通过OpenAI API方式接入开源的Qwen模型服务。原创 2025-08-16 18:50:37 · 83 阅读 · 0 评论 -
【大模型应用开发 1.嵌入模型与向量数据库 Chroma】
向量是一种有大小和方向的数学对象。它可以表示为从一个点到另一个点的有向线段。例如,二维空间中的向量可以表示为(x,y),表示从原点(0,0)到点(x,y)的有向线段。以此类推,我可以用一组坐标(x_0, x_1, x_2, …, x_n)表示一个N维空间中的向量,N 叫向量的维度。嵌入(Embedding)是指非结构化数据转换为向量的过程,通过神经网络模型或相关大模型,将真实世界的离散数据投影到高维数据空间上,根据数据在空间中的不同距离,反映数据在物理世界的相似度。原创 2025-08-16 18:50:25 · 1143 阅读 · 0 评论 -
【NLP 78、手搓Transformer模型结构】
① 初始化 ——> ② 掩蔽自注意力计算 ——> ③ 残差链接与层归一化 ——> ④ 跨注意力计算 ——> ⑤ 残差链接与层归一化 ——> ⑥ 前馈网络计算 ——> ⑦ 残差链接与层归一化。它会对输入(目标序列特征、编码器输出、源序列掩码、目标序列掩码等)进行处理,通过内部的多头注意力机制和前馈网络等组件,对目标序列的特征进行更新和转换。[batch_size, seq_len, d_model]实现位置编码的具体类,通过特定的算法(如基于三角函数的方法)生成位置编码向量,并添加到词嵌入向量上。原创 2025-05-31 16:54:59 · 1394 阅读 · 0 评论 -
【LangChain大模型应用与多智能体开发 ② 接入智谱AI】
本文摘要: 文章详细介绍了智谱AI的GLM-4大模型及其在LangChain中的集成方法。GLM-4作为新一代基座模型,在性能、长文本处理和多模态能力上显著提升,支持复杂任务自动规划和工具调用。主要内容包括:1) GLM-4的基础能力、指令跟随、对齐能力和多模态表现;2) 通过Python SDK调用智谱API的完整流程;3) 在LangChain中封装自定义ZhipuAIGLM4类的实现细节,涵盖类定义、核心方法封装(invoke/stream)及与LangChain的兼容适配;4) 提供完整的调用示例代原创 2025-05-24 17:50:00 · 1499 阅读 · 1 评论 -
【NLP 75、如何通过API调用智谱大模型】
本文介绍了基于智谱AI大模型的多Agent文章优化系统。该系统通过调用智谱API(如ChatGLM、GLM-3-Turbo等模型),实现了从主题分析、语言优化、内容丰富到可读性评估的全流程自动化处理。系统包含多个专用Agent模块,每个模块负责特定优化任务:主题分析Agent提取文章核心思想,语言优化Agent改进语法用词,内容丰富Agent提供扩展建议,可读性Agent评估传播效果。最终由综合优化Agent整合所有建议生成优化版本。文章以游戏《黑神话:悟空》的分析文本为例,展示了完整的优化流程和代码实现,原创 2025-05-18 21:51:05 · 577 阅读 · 0 评论 -
【LangChain大模型应用与多智能体开发 ① 初识LangChain 】
LangChain是一个开源框架,旨在帮助开发者使用大型语言模型(LLMs)和聊天模型构建端到端的应用程序,它提供了一套工具、组件和接口,以简化创建由这些模型支持的应用程序的过程。LangChain的核心概念包括组件(Components)、链(Chains)、模型输入/输出(Model I/O),数据连接(Data Connection)、内存(Memory)和代理(Agents)等。原创 2025-05-23 21:48:23 · 1096 阅读 · 0 评论