摘要
睡眠质量对人体健康至关重要,传统睡眠监测设备存在操作复杂、成本高、侵入性强等问题。本文设计了一种基于STM32的智能睡眠监测仪,以STM32L051低功耗微控制器为核心,结合心率传感器、体动传感器和血氧传感器,实现睡眠过程中生理参数与体动状态的实时采集。系统通过蓝牙将数据传输至手机APP,经算法分析后生成睡眠周期(清醒、浅睡、深睡、REM睡眠)报告及改善建议。测试结果表明,该设备监测准确率达85%以上,功耗低至15μA(休眠状态),可实现非侵入式、低成本的家庭睡眠监测,为用户提供便捷的健康管理工具。
关键词
STM32;睡眠监测;生理参数;低功耗;蓝牙传输
一、引言
据世界卫生组织统计,全球约30%的成年人存在睡眠障碍,长期睡眠质量不佳会增加心血管疾病、抑郁症等患病风险。传统睡眠监测需在专业机构进行,依赖多导睡眠图(PSG)设备,需粘贴电极片,给用户带来不适且成本高昂。家用智能睡眠监测设备因便捷性受到关注,但现有产品多存在参数单一(仅监测体动)、分析精度不足等问题。
STM32L系列微控制器以低功耗特性著称,适合电池供电的可穿戴设备。本文设计的智能睡眠监测仪采用非侵入式设计(放置于床垫下方或枕头旁),通过多传感器融合技术采集心率、体动、血氧等数据,结合睡眠分期算法实现精准监测,兼顾舒适性与专业性,满足家庭日常使用需求。
二、系统总体设计
2.1 功能需求分析
系统需实现以下核心功能:
• 生理参数采集:实时监测睡眠过程中的心率(60-120次/分钟)、血氧饱和度(90%-100%)。
• 体动状态监测:检测睡眠中的翻身、肢体活动等动作,判断睡眠稳定性。
• 睡眠分期分析:基于采集数据划分睡眠周期(清醒、浅睡、深睡、REM睡眠)。
• 数据存储与传输:本地存储单晚睡眠数据,通过蓝牙同步至手机APP。
• 低功耗管理:支持自动唤醒与休眠,确保单次充电续航≥7天。
• 异常报警:当心率或血氧低于安全阈值时,通过APP推送预警信息。
2.2 系统架构设计
系统采用“采集-处理-传输-分析”四层架构,由5个核心模块组成:
1. 主控模块:STM32L051负责传感器数据采集、处理及低功耗控制。
2. 传感模块:包括心率血氧传感器、三轴加速度传感器,采集生理与运动数据。
3. 存储模块:Flash芯片存储原始数据与睡眠分析结果,容量支持7天记录。
4. 通信模块:BLE蓝牙模块实现与手机APP的低功耗数据交互。
5. 电源模块:锂电池供电,配合电源管理芯片实现多级功耗控制。
三、系统硬件设计
3.1 主控模块选型
选用STM32L051C8T6作为主控芯片,基于Cortex-M0+内核,工作频率32MHz,具备超低功耗特性:休眠模式(Stop 2模式)电流仅0.5μA,运行模式电流25μA/MHz。芯片内置12位ADC、I2C、SPI、UART等外设,可直接连接传感器与通信模块,同时支持多种低功耗唤醒方式(定时器、外部中断),满足睡眠监测的长时间续航需求。
3.2 传感模块设计
• 心率血氧传感器:采用MAX30102集成传感器,通过I2C接口与STM32连接,利用红光与红外光反射原理测量心率与血氧。传感器内置LED驱动与光电二极管,测量范围:心率30-240次/分钟,血氧90%-100%,采样率设为10Hz,兼顾精度与功耗。
• 体动传感器:选用LIS3DH三轴加速度传感器,通过SPI接口连接,测量范围±2g,分辨率10位。通过检测加速度变化判断体动强度(静态、轻微活动、剧烈活动),采样率设为5Hz,当检测到持续30秒无体动时,触发STM32进入深度休眠。
3.3 存储与通信模块设计
• 存储模块:采用W25Q16 Flash芯片(SPI接口,容量2MB),单条睡眠记录(8小时)约占用128KB,可存储16晚数据。数据按时间戳分区存储,支持快速查询与批量上传。
• 通信模块:选用CC2541 BLE蓝牙模块,通过UART接口与STM32连接,工作在从机模式,通信距离≤10米。蓝牙仅在设备唤醒或手机主动连接时激活,传输完成后立即进入低功耗模式,降低能耗。
3.4 电源模块设计
系统采用3.7V锂电池(容量500mAh)供电,通过RT9193-3.3V LDO稳压芯片输出3.3V电压。设计三级电源管理:
1. 工作模式:传感器与蓝牙均激活,电流约30mA;
2. 监测模式:仅传感器工作,蓝牙关闭,电流约8mA;
3. 休眠模式:传感器与蓝牙关闭,仅STM32保持实时时钟,电流约15μA。
通过STM32的GPIO控制各模块电源开关,实现动态功耗调节,单次充电可续航10天以上。
四、系统软件设计
4.1 开发环境与工具
软件开发基于Keil MDK5平台,采用C语言编程,结合STM32CubeL0库函数实现低功耗配置与传感器驱动。手机APP采用Flutter开发,支持Android与iOS系统,实现数据可视化与睡眠报告生成。
4.2 主程序流程
系统上电后完成初始化(传感器、Flash、蓝牙),随后进入循环监测:
1. 定时唤醒(每10秒一次),启动传感器采集心率、血氧与体动数据。
2. 对原始数据进行滤波处理(去除高频噪声),提取特征值(如心率变异性、体动次数)。
3. 将处理后的数据暂存至RAM,每小时写入Flash一次,避免频繁擦写消耗功耗。
4. 检测到手机蓝牙连接时,上传当日睡眠数据至APP,随后继续监测。
5. 凌晨6点后自动结束监测,进入待机状态,等待手机同步数据。
4.3 睡眠分期算法实现
采用基于规则的睡眠分期算法,步骤如下:
1. 特征提取:计算5分钟窗口期内的心率平均值(HR)、体动次数(MA)、血氧值(SpO2)。
2. 分期规则:
◦ 清醒期(W):MA≥3次/5分钟,HR波动>10次/分钟;
◦ 浅睡期(N1-N2):1≤MA<3次/5分钟,HR较清醒期降低5-10次/分钟;
◦ 深睡期(N3):MA=0次/5分钟,HR较清醒期降低>10次/分钟;
◦ REM期:MA≤1次/5分钟,HR接近清醒期,且持续时间≥10分钟。
3. 结果优化:通过滑动窗口平滑处理,避免短期波动导致的分期跳变。
4.4 低功耗管理策略
软件层面采用三级功耗控制:
• 数据采集时:仅激活必要外设(传感器、ADC),其他模块关闭;
• 空闲时:STM32进入Stop 1模式(电流≈2μA),定时器每10秒唤醒一次;
• 长时间无操作(>24小时):进入Stop 2模式(电流≈0.5μA),仅保留RTC时钟。
五、系统测试与结果分析
5.1 测试环境与方法
测试对象为10名健康成年人(20-35岁),同步使用本设备与医用PSG设备进行单晚睡眠监测。测试指标包括:
• 准确率:对比设备与PSG的睡眠分期结果,计算总体一致率;
• 续航时间:满电状态下连续监测,记录直至低电量报警的天数;
• 数据稳定性:检查连续7天存储的数据是否完整,无丢失或错乱。
5.2 测试结果
1. 睡眠分期准确率:10名测试者的总体一致率为86.3%,其中深睡期识别准确率最高(92%),REM期次之(81%),主要误差源于浅睡与清醒期的区分。
2. 续航表现:满电状态下可连续监测12天,远超设计目标(≥7天),满足每周充电一次的使用需求。
3. 数据稳定性:连续7天存储的数据完整,蓝牙同步成功率100%,无丢包现象。
4. 异常报警:模拟血氧降至88%(低于阈值90%)时,设备在10秒内触发APP报警,响应及时。
5.3 结果分析
测试表明,系统在睡眠分期准确率与续航能力上表现良好,可满足家庭监测需求。REM期识别误差主要因个体差异导致(部分用户REM期体动较多),后续可引入机器学习算法优化分期模型。设备非侵入式设计提升了用户接受度,测试反馈显示90%的用户认为佩戴舒适度优于传统设备。
六、结论
本文设计的基于STM32的智能睡眠监测仪,通过低功耗硬件设计与多传感器融合算法,实现了睡眠参数的精准采集与分析,具有成本低、便携性强、续航久等优势。相比传统设备,其非侵入式设计提升了用户体验,适合长期家庭监测。
未来可进一步优化:增加呼吸监测功能(通过胸动传感器),完善生理参数维度;引入个性化算法模型,根据用户历史数据动态调整分期规则;集成无线充电模块,提升使用便捷性。该设计为家庭健康监测设备的研发提供了可行方案,具有较好的市场应用前景。