基于STM32的水产养殖监测系统设计与实现
摘要
针对传统水产养殖中环境参数监测滞后、调控不及时导致养殖效益下降的问题,本文设计了一种基于STM32的水产养殖监测系统。该系统以STM32F103ZET6为核心控制器,集成多种传感器实现水质参数(pH值、溶解氧、氨氮浓度)与环境参数(水温、光照)的实时采集,通过无线通信构建监测网络,具备数据存储、异常预警、远程调控等功能。测试结果表明,系统溶解氧测量精度达±0.1mg/L,pH值误差≤0.1,水温监测精度±0.3℃,可满足水产养殖精细化管理需求,为提高养殖成活率和产量提供技术支撑。
关键词:STM32;水产养殖;环境监测;无线通信;远程调控
一、引言
(一)研究背景
水产养殖产量与水质环境密切相关,溶解氧不足会导致鱼虾浮头甚至死亡,pH值失衡会影响水生生物代谢,氨氮浓度超标则会引发病害。传统养殖依赖人工巡检,存在采样间隔长、数据代表性差、异常处理滞后等问题。据统计,因水质恶化导致的养殖损失占总产量的15%-20%,亟需构建实时、精准的监测系统。
随着嵌入式技术的发展,基于STM32的监测系统凭借高稳定性和扩展性,成为水产养殖智能化的重要解决方案。该系统可实现多参数连续监测与智能调控,显著降低养殖风险,提升产业效益。
(二)研究意义
本设计的创新点在于:
• 采用传感器阵列实现水质多参数同步采集,避免单一参数监测的局限性;
• 结合养殖品种特性设置动态阈值(如虾类与鱼类的溶解氧需求差异);
• 集成增氧机、换水装置等执行设备,形成“监测-预警-调控”闭环;
• 支持历史数据趋势分析,为养殖策略优化提供数据依据。
该系统的研发对推动水产养殖从经验管理向数据驱动转型具有重要意义。
二、系统总体设计
(一)设计目标
1. 监测参数:溶解氧(0-20mg/L)、pH值(4-10)、氨氮(0-5mg/L)、水温(0-40℃)、光照(0-10000lux);
2. 采样间隔可设(1-60分钟),数据存储容量≥10万条;
3. 异常时10秒内触发声光报警,同时推送信息至手机APP;
4. 支持远程控制增氧机、换水阀等设备,控制响应时间≤3秒;
5. 监测节点防水等级IP68,适应水下长期工作环境。
(二)系统架构
系统采用三层架构:
• 感知层:由多个监测节点组成,每个节点含水质传感器与数据采集模块;
• 传输层:以STM32F103ZET6为主控,通过LoRa模块构建无线传感网络,协调器节点经GPRS上传数据;
• 应用层:包括本地监控终端与云平台,实现数据展示、预警管理、设备控制。
三、硬件设计
(一)核心控制模块
选用STM32F103ZET6作为主控制器,基于ARM Cortex-M3内核,主频72MHz,具备:
• 12位ADC模块(16通道),支持多传感器数据同步采集;
• 3个USART接口,满足LoRa、GPRS模块通信需求;
• 512KB Flash与64KB RAM,可存储大量监测数据与控制程序;
• 丰富的GPIO接口,便于连接传感器与执行设备。
外围电路包括3.3V电源模块(DC-DC转换)、复位电路和RTC时钟,确保定时采样准确性。
(二)传感器模块
1. 溶解氧传感器:采用电极式DO传感器(GST-DO-01),测量范围0-20mg/L,输出4-20mA电流信号,经调理电路转换为0-3.3V电压后接入ADC。
2. pH传感器:选用PH-100模块,通过专用变送器输出0-5V模拟信号,对应pH4-10,经分压后输入STM32。
3. 氨氮传感器:采用离子选择电极(NH4-N-100),测量范围0-5mg/L,精度±0.1mg/L,支持自动温度补偿。
4. 温湿度与光照:集成SHT30(温湿度)和BH1750(光照)传感器,通过I2C接口通信,满足环境参数监测需求。
传感器探头采用防水封装,电缆长度可定制(5-20米),适应不同养殖池深度。
(三)通信与执行模块
1. 无线通信:监测节点搭载SX1278 LoRa模块(433MHz),传输距离≥1km(开阔水域),协调器节点通过MC20 GPRS模块接入互联网,实现数据远程上传。
2. 执行设备:
◦ 增氧机控制:通过继电器模块(SRD-05VDC)控制220V增氧设备,溶解氧≤5mg/L时自动启动;
◦ 换水阀控制:采用电动球阀(DC12V),氨氮超标时触发部分换水;
◦ 报警装置:集成12V蜂鸣器与红色LED,异常时声光报警。
(四)电源模块
监测节点采用12V/5Ah锂电池供电,搭配低功耗管理芯片(TP4056)支持太阳能充电,连续阴雨天气续航≥7天;协调器节点采用220V转12V电源适配器供电,确保长期运行。
四、软件设计
(一)节点程序流程
节点上电初始化后进入低功耗循环:
1. RTC定时唤醒(按设定间隔),启动传感器采集;
2. 对数据进行滤波处理(滑动平均法,取10次采样平均值);
3. 与预设阈值对比,判断是否异常(如溶解氧<5mg/L);
4. 数据打包(含节点ID、时间戳、参数值、异常标识),存储至W25Q128 Flash;
5. 通过LoRa发送数据至协调器,异常时启动本地报警;
6. 接收调控指令,执行增氧、换水等操作,反馈执行结果。
(二)数据处理算法
1. 温度补偿算法:溶解氧与pH值受温度影响显著,采用二次曲线拟合补偿:
DO_{补偿}=DO_{测量}×[1+0.024×(25-T)]
(T为实测水温)
2. 异常判断逻辑:
◦ 一级预警:参数超出安全范围但未达危险值(如DO=4-5mg/L),仅APP提示;
◦ 二级预警:参数达危险值(如DO<4mg/L),启动声光报警+设备联动;
◦ 三级预警:参数严重超标(如DO<3mg/L),同时拨打管理员电话(预设3个号码)。
(三)云平台与APP设计
云平台采用B/S架构,基于阿里云IoT平台开发,功能包括:
1. 实时监测:地图显示各节点位置与参数,异常节点标红;
2. 历史查询:按时间/节点查询数据,生成趋势曲线(如昼夜溶解氧变化);
3. 设备控制:远程操作增氧机、换水阀,记录操作日志;
4. 阈值管理:按养殖品种(如草鱼、南美白对虾)设置差异化参数范围。
手机APP支持Android/iOS系统,接收推送消息并显示实时数据,支持手动远程控制。
五、系统测试与结果分析
(一)测试环境
在5亩草鱼养殖塘部署10个监测节点,覆盖进水口、中央区、增氧区等关键位置,测试周期30天,对比系统数据与实验室检测结果。
(二)性能测试
1. 测量精度:
◦ 溶解氧:与哈希HQ30d检测仪对比,误差±0.08mg/L;
◦ pH值:与精密pH计对比,误差≤0.07;
◦ 水温:与标准温度计对比,误差±0.2℃;
◦ 氨氮:与纳氏试剂比色法对比,误差≤0.05mg/L。
2. 通信与响应:
◦ LoRa数据传输成功率99.2%,单次传输延迟≤1.5秒;
◦ 异常预警响应时间:本地报警≤2秒,APP推送≤5秒;
◦ 远程控制指令响应≤3秒,设备执行准确率100%。
3. 实际应用效果:
◦ 系统成功预警3次溶解氧骤降(因藻类夜间耗氧),自动启动增氧机后1小时内DO回升至5mg/L以上;
◦ 监测到1次氨氮超标(雨后污水流入),触发换水后24小时恢复正常;
◦ 相比传统养殖,测试期间草鱼成活率提升12%,饲料转化率提高8%。
六、结论与展望
(一)研究结论
本文设计的基于STM32的水产养殖监测系统,实现了水质多参数实时监测、异常智能预警与设备联动控制。测试表明,系统测量精度高、通信稳定、响应及时,能有效降低养殖风险,提升管理效率,达到设计目标。
(二)未来展望
1. 增加水质预测功能,基于LSTM神经网络预测24小时参数变化趋势;
2. 集成水质调节设备(如pH中和装置),实现闭环调控;
3. 扩展视频监控模块,直观观察养殖生物活动状态。
该系统可推广至淡水、海水等多种养殖场景,对推动水产养殖业智能化发展具有实际应用价值。
参考文献
[1] 张某某, 王某某. 水产养殖环境监测技术研究进展[J]. 农业工程学报, 2022, 38(5): 1-10.
[2] 李某某. 基于物联网的智慧渔业系统设计与实现[D]. 南京: 南京农业大学, 2021.
[3] 刘某某, 赵某某. 低功耗水质传感器节点的设计与校准[J]. 传感器与微系统, 2023, 42(3): 86-89.