目录
stack使用
参照数据结构章节: 栈介绍和实现
1. stack是一种容器适配器,专门用在具有后进先出操作的上下文环境中,其删除只能从容器的一端进行 元素的插入与提取操作。
2. stack是作为容器适配器被实现的,容器适配器即是对特定类封装作为其底层的容器,并提供一组特定 的成员函数来访问其元素,将特定类作为其底层的,元素特定容器的尾部(即栈顶)被压入和弹出。
3. stack的底层容器可以是任何标准的容器类模板或者一些其他特定的容器类,这些容器类应该支持以下操作:
empty:判空操作
back:获取尾部元素
push_back:尾部插入元素
pop_back:尾部删除元素
4. 标准容器vector、deque、list均符合这些需求,默认情况下,如果没有为stack指定特定的底层容器, 默认情况下使用deque
#include <iostream>
#include <stack>
using namespace std;
int main()
{
stack<int> st;
st.push(1);
st.push(2);
st.push(3);
st.push(4);
while(!st.empty())
{
cout << st.top() << " "; //4 3 2 1
st.pop();
}
return 0;
}
stack模拟实现
#include <iostream>
#include <vector>
namespace dck
{
//容器适配器(用模板参数控制底层容器是谁)
template <class T, class Container = std::vector<T>>
class stack
{
public:
void push(const T &x)
{
_con.push_back(x);
}
void pop()
{
_con.pop_back();
}
const T &top()
{
return _con.back();
}
bool empty()
{
return _con.empty();
}
size_t size()
{
return _con.size();
}
private:
Container _con; // 容器适配器
};
}
queue使用
参照数据结构章节: 队列介绍和实现
1. 队列是一种容器适配器,专门用于在FIFO上下文(先进先出)中操作,其中从容器一端插入元素,另一端 提取元素。
2. 队列作为容器适配器实现,容器适配器即将特定容器类封装作为其底层容器类,queue提供一组特定的 成员函数来访问其元素。元素从队尾入队列,从队头出队列。
3. 底层容器可以是标准容器类模板之一,也可以是其他专门设计的容器类。该底层容器应至少支持以下操作:
empty:检测队列是否为空
size:返回队列中有效元素的个数
front:返回队头元素的引用
back:返回队尾元素的引用
push_back:在队列尾部入队列
pop_front:在队列头部出队列
4. 标准容器类deque和list满足了这些要求。默认情况下,如果没有为queue实例化指定容器类,则使用标 准容器deque。
#include <iostream>
#include <queue>
using namespace std;
int main()
{
queue<int> q;
q.push(1);
q.push(2);
q.push(3);
q.push(4);
while(!q.empty())
{
cout << q.front() << " "; //1 2 3 4
q.pop();
}
return 0;
}
queue模拟实现
#include <iostream>
#include <vector>
namespace dck
{
template<class T, class Container = std::vector<T>>
class queue
{
public:
void push(const T& x)
{
_con.push_back(x);
}
void pop()
{
_con.pop_front();
}
const T& front()
{
return _con.front();
}
const T& back()
{
return _con.back();
}
bool empty()
{
return _con.empty();
}
size_t size()
{
return _con.size();
}
private:
Container _con;
};
}
priority_queue使用
参照数据结构章节: 堆介绍和实现
1. 优先队列是一种容器适配器,根据严格的弱排序标准,它的第一个元素总是它所包含的元素中最大的。
2. 此上下文类似于堆,在堆中可以随时插入元素,并且只能检索最大堆元素(优先队列中位于顶部的元 素)。
3. 优先队列被实现为容器适配器,容器适配器即将特定容器类封装作为其底层容器类,queue提供一组特 定的成员函数来访问其元素。元素从特定容器的“尾部”弹出,其称为优先队列的顶部。
4. 底层容器可以是任何标准容器类模板,也可以是其他特定设计的容器类。容器应该可以通过随机访问迭 代器访问,并支持以下操作: empty():检测容器是否为空 size():返回容器中有效元素个数 front():返回容器中第一个元素的引用 push_back():在容器尾部插入元素 pop_back():删除容器尾部元素
5. 标准容器类vector和deque满足这些需求。默认情况下,如果没有为特定的priority_queue类实例化指 定容器类,则使用vector。
6. 需要支持随机访问迭代器,以便始终在内部保持堆结构。容器适配器通过在需要时自动调用算法函数 make_heap、push_heap和pop_heap来自动完成此操作
● 优先级队列的第二个参数表示底层使用的容器,默认是vector,第三个参数传递仿函数,可以控制大小堆,传less对象,为大堆,传greater对象,为小堆
#include <iostream>
#include <queue>
using namespace std;
int main()
{
// priority_queue<int, vector<int>, less<int>> q; //大堆
priority_queue<int, vector<int>, greater<int>> q; //小堆
q.push(3);
q.push(1);
q.push(5);
q.push(4);
q.push(2);
while (!q.empty())
{
cout << q.top() << " "; //1 2 3 4 5
q.pop();
}
cout << endl;
}
● 优先级队列中也可以存储自定义类型数据,此时要实现大小堆就需要在自定义的类中实现>或< 运算符重载函数
#include <iostream>
#include <queue>
using namespace std;
class Date
{
public:
Date(int year = 1900, int month = 1, int day = 1)
: _year(year)
, _month(month)
, _day(day)
{}
bool operator<(const Date& d)const
{
return (_year < d._year) ||
(_year == d._year && _month < d._month) ||
(_year == d._year && _month == d._month && _day < d._day);
}
bool operator>(const Date& d)const
{
return (_year > d._year) ||
(_year == d._year && _month > d._month) ||
(_year == d._year && _month == d._month && _day > d._day);
}
friend ostream& operator<<(ostream& _cout, const Date& d);
private:
int _year;
int _month;
int _day;
};
ostream& operator<<(ostream& _cout, const Date& d)
{
_cout << d._year << "-" << d._month << "-" << d._day;
return _cout;
}
int main()
{
//默认是大堆, Date类中需要提供<重载
priority_queue<Date> q1;
q1.push(Date(2018, 10, 29));
q1.push(Date(2018, 10, 28));
q1.push(Date(2018, 10, 30));
cout << q1.top() << endl; //2018-10-30
//小堆, Date类中需要提供>重载
priority_queue<Date, vector<Date>, greater<Date>> q2;
q2.push(Date(2018, 10, 29));
q2.push(Date(2018, 10, 28));
q2.push(Date(2018, 10, 30));
cout << q2.top() << endl; //2018-10-28
return 0;
}
● 如果想要使优先级队列中按照我们自己的预期比大小,我们也可以自定义函数对象(仿函数);
比如优先级队列中的数据是指针(地址),指针直接比大小没有意义,想要按照指针的内容比大小,我们就可以自定义pDateCompare仿函数实现
struct pDateCompare
{
bool operator()(Date* p1, Date* p2)
{
return *p1 > *p2;
}
};
int main()
{
Date* p1 = new Date(2018, 10, 29);
Date* p2 = new Date(2018, 10, 28);
Date* p3 = new Date(2018, 10, 30);
priority_queue<Date*, vector<Date*>, pDateCompare> q;
q.push(p1);
q.push(p2);
q.push(p3);
cout << *(q.top()) << endl; //2018-10-28
return 0;
}
priority_queue模拟实现
#include<iostream>
#include<vector>
using namespace std;
//仿函数,控制大小堆
template <class T>
class Less //大堆
{
public:
bool operator()(const T& x, const T& y)
{
return x < y;
}
};
template <class T>
class Greater //小堆
{
public:
bool operator()(const T& x, const T& y)
{
return x > y;
}
};
namespace dck
{
template<class T, class Container = vector<T>, class Compare = Less<T>>
class priority_queue
{
public:
//无参构造函数
priority_queue()
{}
//迭代器区间构造函数
template<class InputIterator>
priority_queue(InputIterator first, InputIterator last)
:_con(first, last)
{
//建堆
for (int i = (_con.size() - 2) / 2; i > 0; i--)
{
adjust_down(i);
}
}
void adjust_up(int child)
{
Compare com;
int parent = (child - 1) / 2;
while (child > 0)
{
//if ( _con[parent] < _con[child])
//if (com.operator()(_con[parent], _con[child])
if (com(_con[parent], _con[child]))
{
swap(_con[child], _con[parent]);
child = parent;
parent = (child - 1) / 2;
}
else
{
break;
}
}
}
void push(const T& x)
{
_con.push_back(x);
adjust_up(_con.size() - 1);
}
void adjust_down(int parent)
{
Compare com;
int child = parent * 2 + 1;
while (child < _con.size())
{
//if (child + 1 < _con.size() && _con[child] < _con[child + 1])
if (child + 1 < _con.size() && com(_con[child], _con[child + 1]))
{
++child;
}
//if (_con[parent] < _con[child])
if (com(_con[parent], _con[child]))
{
swap(_con[child], _con[parent]);
parent = child;
child = parent * 2 + 1;
}
else
{
break;
}
}
}
void pop()
{
std::swap(_con[0], _con[_con.size() - 1]);
_con.pop_back();
adjust_down(0);
}
const T& top()
{
return _con[0];
}
bool empty()
{
return _con.empty();
}
size_t size()
{
return _con.size();
}
private:
Container _con;
};
}
deque
deque(双端队列):是一种双开口的"连续"空间的数据结构,双开口的含义是:可以在头尾两端进行插入和 删除操作,且时间复杂度为O(1),与vector比较,头插效率高,不需要搬移元素;与list比较,空间利用率比较高。
deque并不是真正连续的空间,而是由一段段连续的小空间拼接而成的,实际deque类似于一个动态的二维数组,其底层结构如下图所示
双端队列底层是一段假象的连续空间,实际是分段连续的,为了维护其“整体连续”以及随机访问的假象,落 在了deque的迭代器身上,因此deque的迭代器设计就比较复杂,如下图所示:
那deque是如何借助其迭代器维护其假想连续的结构呢?
deque的缺陷
与vector比较,deque的优势是:头部插入和删除时,不需要搬移元素,效率特别高,而且在扩容时,也不需要搬移大量的元素,因此其效率是必vector高的。 与list比较,其底层是连续空间,空间利用率比较高,不需要存储额外字段。
但是,deque有一个致命缺陷:不适合遍历,因为在遍历时,deque的迭代器要频繁的去检测其是否移动到某段小空间的边界,导致效率低下,而序列式场景中,可能需要经常遍历,因此在实际中,需要线性结构时,大多数情况下优先考虑vector和list,deque的应用并不多,而目前能看到的一个应用就是,STL用其作为stack和queue的底层数据结构
为什么选择deque作为stack和queue的底层默认容器
stack是一种后进先出的特殊线性数据结构,因此只要具有push_back()和pop_back()操作的线性结构,都可以作为stack的底层容器,比如vector和list都可以;queue是先进先出的特殊线性数据结构,只要具有 push_back和pop_front操作的线性结构,都可以作为queue的底层容器,比如list
但是STL中对stack和queue默认选择deque作为其底层容器,主要是因为:
1. stack和queue不需要遍历(因此stack和queue没有迭代器),只需要在固定的一端或者两端进行操作。
2. 在stack中元素增长时,deque比vector的效率高(扩容时不需要搬移大量数据);queue中的元素增长时,deque不仅效率高,而且内存使用率高。 结合了deque的优点,而完美的避开了其缺陷