一.等度量映射算法(Isomap)
算法前提:MDS算法,MDS是基于距离度量的数据降维算法,要求高维数据降维成低维数据后,样本点的相对位置关系不变。
Isomap算法是基于前面所讲的MDS算法,不同之处在于isomap用测地距离替代了MDS中欧式空间的距离,这样能更好的拟合流行体数据。(主要针对多维流行结构)
算法流程:
(1)针对高维中每个点,对其k紧邻的点构建邻接矩阵(非k近邻距离视为无穷大);
(2)用最短路径算法(Floyd算法或者Dijkstra算法)计算k近邻点之间的测地距离;
(3)利用更新过的距离矩阵,使用MDS算法进行降维。
算法优点:
通过保持数据点之间的测地距离,能够有效地揭示数据的内在结构和非线性关系
算法缺点:
(1)对邻域选择敏感:Isomap算法的降维效果受近邻点选择的影响较大,不同的近邻点选择可能 导致不同的降维结果;
(2)无法处理非线性结构:Isomap算法对于非线性结构的流形数据降维效果不佳;
(3)对于大规模数据计算较为耗时;
二.局部线性嵌入算法(LLE)
核心思想:假设高维数据可以在