非线性降维算法(Isomap、LLE、LDE)

一.等度量映射算法(Isomap)

算法前提:MDS算法,MDS是基于距离度量的数据降维算法,要求高维数据降维成低维数据后,样本点的相对位置关系不变。

                                

Isomap算法是基于前面所讲的MDS算法,不同之处在于isomap用测地距离替代了MDS中欧式空间的距离,这样能更好的拟合流行体数据。(主要针对多维流行结构)

算法流程:

(1)针对高维中每个点,对其k紧邻的点构建邻接矩阵(非k近邻距离视为无穷大);

(2)用最短路径算法(Floyd算法或者Dijkstra算法)计算k近邻点之间的测地距离;

(3)利用更新过的距离矩阵,使用MDS算法进行降维。

算法优点:

通过保持数据点之间的测地距离,能够有效地揭示数据的内在结构和非线性关系

算法缺点:

(1)对邻域选择敏感:Isomap算法的降维效果受近邻点选择的影响较大,不同的近邻点选择可能  导致不同的降维结果;

(2)无法处理非线性结构:Isomap算法对于非线性结构的流形数据降维效果不佳;

(3)对于大规模数据计算较为耗时;

二.局部线性嵌入算法(LLE)

核心思想:假设高维数据可以在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值