LDA(线性判别分析)--基础降维算法

一.原理简介

LDA线性判别分析,是一种监督学习算法,但在二分类问题上,由于最早由Ronald Fisher提出,

所以也称为Fisher判别分析(FDA),但LDA与FDA还是有些区别的,LDA假设各类样本数据都是

高斯分布,协方差矩阵相同且满秩。相比PCA,LDA是有监督的降维算法,即数据是有标签的(类

别标签)。

如下图所示的数据,根据PCA算法,数据应该映射到数据方差最大的方向,即垂直方向(红线方

向),但是图示中的两个类别将完全混合混在一起,很难区分开,这时候我们发现采用PCA算法来

解决问题的效果非常差,但是如果我们采用LDA,数据将映射到水平轴方向(蓝线方向),这时候

我们发现同类数据比较集中,不同类的数据被完全地分开,效果正如我们想要的那样。

                                

二.二分类LDA原理推导

LDA主要是为了分类,所以相应的投影方向w,使得投影后的数据尽可能按照原始的类别进行分

开,我们仍从上面的二分类问题出发,我们假设两个类别的均值(中心)分别为

   。我们希望投影后两个类的距离尽可能大,这样易于区分,类间距离可以表

示为\tilde{\mu _{1}}\tilde{\mu _{2}} 表示两类中心在w方向上的投影向量),其中\tilde{\mu _{1}}=w^T*\mu _{1}

\tilde{\mu _{2}}=w^T*\mu _{2} ,因此优化问题可以表示为:

                                

为此我们定义类间散度矩阵为:(between-class scatter matrix)

                                        

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值