1. 监督学习(Supervised Learning)
- 中文定义:监督学习是一种机器学习方法,其中模型从带有正确答案(标签)的数据中学习。这些正确答案(即“标签”)指导算法调整预测结果。在监督学习中,目标是根据输入数据预测输出标签(如预测房价、判断肿瘤是否恶性)。
- 英文定义:Supervised learning is a type of machine learning where the model learns from labeled data, i.e., data with the "right answers" provided. The goal is to predict the correct label for new input data, like predicting house prices or classifying tumors as malignant or benign.
图中的 左侧 展示了一个回归或分类任务的例子,其中数据集包含肿瘤的大小和年龄(肿瘤大小和年龄作为输入特征)以及标签(“良性”或“恶性”)。学习算法通过标签指导模型进行学习,从而找到合适的决策边界进行分类或预测。
2. 无监督学习(Unsupervised Learning)
- 中文定义:无监督学习是一种机器学习方法,其中模型从没有标签的数据中学习。这里没有给定“正确答案”,算法需要自行发现数据中的规律和结构。常见的无监督学习任务包括聚类(Clustering)和降维(Dimensionality Reduction)。
- 英文定义:Unsupervised learning is a type of machine learning where the model learns from unlabeled data. There are no "right answers" provided; instead, the algorithm must discover patterns and structures in the data on its own. Common tasks in unsupervised learning include clustering and dimensionality reduction.
图中的 右侧 展示了一个无监督学习的例子,其中数据集没有标签。算法的任务是将数据分成不同的类别,可能基于相似性进行聚类。在这个例子中,肿瘤的大小和年龄作为输入特征,数据被分为两个类别。
总结对比
概念 | 监督学习(Supervised Learning) | 无监督学习(Unsupervised Learning) |
---|---|---|
输入数据 | 输入数据与标签(正确答案)一起提供 | 只有输入数据,没有标签 |
目标 | 根据已知标签学习预测结果 | 无标签数据中发现潜在结构或规律 |
任务 | 回归(预测数值)、分类(预测类别) | 聚类(Clustering)、降维(Dimensionality Reduction) |
学习方式 | 从数据中学习已标注的结果(正确答案) | 从数据中学习隐藏的结构或类别(没有标 |
1. 聚类(Clustering)
- 中文定义:聚类是一种无监督学习方法,目的是将数据集中的样本根据相似性分组,使得同一组中的样本尽可能相似,而不同组之间的样本尽可能不同。在聚类任务中,算法没有给定“正确答案”或标签,模型自主地发现数据中的模式。
- 英文定义:Clustering is an unsupervised learning technique aimed at grouping similar data points together, where samples in the same group are as similar as possible, while samples in different groups are as dissimilar as possible. In clustering, the algorithm must find these groups without being given any labels or "right answers."
图中的例子:
图中显示的是 Google News 中的新闻条目,标题内容相似的新闻被 圈出相同的关键词,如“Giant panda”, “twin”, 和 “Zoo” 等。算法没有预先标注哪些新闻是关于“熊猫”的,而是通过分析新闻中的关键词和主题自动将其分类为类似的组。
2. 聚类的关键点:
- 无监督学习:没有标签或已知的类别信息,算法根据数据本身的特征进行学习。
- 自动分组:如图所示,算法基于新闻内容的相似性将不同新闻分为组,找出它们之间的相似性。
1. DNA 微阵列数据与聚类
- 中文定义:DNA 微阵列技术是一种用于同时分析成千上万基因表达的技术。通过聚类分析,研究人员可以发现不同个体在基因表达模式上的相似性。例如,某些类型的癌症患者在基因表达上可能表现出共同的特征。
- 英文定义:DNA microarray is a technology used to analyze the expression of thousands of genes at once. By applying clustering, researchers can identify similarities in gene expression patterns across different individuals. For instance, patients with certain types of cancer may exhibit similar gene expression profiles.
图中的数据矩阵是基于 基因(Genes) 进行排列的,每一行代表一个基因,每一列代表一个不同的个体。在这个数据集中,不同个体的基因表达数据被按照相似性进行了 聚类,并且聚类结果被分成了三种类型:type 1, type 2, 和 type 3。
2. 聚类的关键点:
- 无监督学习:在这个例子中,我们没有事先知道哪些个体属于哪个类别,也没有标签。聚类算法会基于数据的特征自动进行分组。在这种情况下,算法从大量的基因数据中提取出相似的模式,并将个体分成三个不同的类别。
- 类型分类:聚类结果分为 type 1, type 2, type 3,这些类型代表着不同的基因表达模式,可能与不同的疾病类型或个体特征相关。
3. 应用示例:
假设我们正在分析一组癌症患者的基因表达数据,使用无监督学习方法进行聚类。通过聚类分析,我们可能发现某些患者的基因表达模式与其他患者有显著差异。比如,type 1 组的患者可能在基因表达上与某种类型的癌症相关,而 type 2 和 type 3 组可能对应着其他类型的癌症或不同的疾病表现。
无监督学习(Unsupervised Learning)详解
无监督学习(Unsupervised Learning)是一种机器学习方法,指的是在没有标签的情况下,让算法从数据中提取有用的信息和模式。与监督学习(Supervised Learning)不同,监督学习依赖于已标记的数据,目标是根据已知标签训练模型,而无监督学习没有标签信息,目标是挖掘数据的潜在结构和规律。
无监督学习广泛应用于数据探索、模式识别、数据预处理等多个领域,常见的任务包括 聚类(Clustering)、降维(Dimensionality Reduction)、关联规则学习(Association Rule Learning)等。
无监督学习的主要任务
-
聚类(Clustering)
聚类是无监督学习中最常见的任务之一。聚类算法将数据集划分为多个簇或组,每个簇中的数据点具有相似性,而不同簇的数据点差异较大。聚类常用于探索数据集的内部结构、用户分群、图像分割等。示例:
- K-means 聚类:假设你有一组数据,表示不同顾客的购买行为,K-means 算法将这些顾客分成不同的群体(如高价值顾客、低价值顾客等),基于他们的购买习惯。
- 层次聚类(Hierarchical Clustering):用于将数据根据相似度构建层次结构,例如企业对消费者的群体划分。
-
降维(Dimensionality Reduction)
降维的目的是将数据的特征空间从高维压缩到低维,同时尽量保留数据的关键信息。降维可以帮助我们更好地理解数据结构,减小计算复杂度,还能去除冗余信息或噪声。常见的降维方法有 主成分分析(PCA)、t-SNE(t-Distributed Stochastic Neighbor Embedding)等。示例:
- PCA:在进行人脸识别时,图像数据可能包含上千个像素点,通过PCA技术将高维数据降维为二维或三维,保留最重要的特征,减少计算量,帮助提高模型的效率。
- t-SNE:用于非线性降维,常用于数据可视化,将高维数据映射到低维空间,帮助研究人员理解数据中的聚类结构。
-
异常检测(Anomaly Detection)
无监督学习也可用于识别数据中的异常模式或离群点。例如,金融领域中的欺诈检测、工业生产中的故障检测等。示例:
- 信用卡欺诈检测:无监督学习算法可以识别出与常规交易行为不符的信用卡交易,如突然发生的大额交易、异地交易等。
- 机器设备监控:通过分析传感器数据,找出不符合正常运行模式的数据点,从而预警设备故障。
-
关联规则学习(Association Rule Learning)
关联规则学习旨在从大量数据中发现不同项之间的关联关系。最著名的算法是 Apriori,它常用于市场篮分析,用于识别消费者购买行为中的关联规则。示例:
- 市场篮分析:商店通过分析顾客的购物行为,发现“购买面包的顾客通常也会购买牛奶”。这种信息有助于商店做促销活动,或者安排商品的陈列。
无监督学习的优势
-
无需标签数据
无监督学习不需要人工标注数据,这对于获取大规模数据集时非常有用,尤其在许多实际问题中,标注数据的成本较高。 -
发现数据的潜在结构
无监督学习可以帮助发现数据中未被察觉的模式或规律。例如,通过聚类分析可以揭示客户的不同需求,通过降维可以发现数据的本质特征。 -
灵活性高
无监督学习能够处理各种不同类型的任务,如数据压缩、数据分类、特征选择等,具有较高的应用灵活性。