GMM sample question

一、题目翻译

题目​:关于高斯混合模型(GMM),以下哪一说法是错误的?
选项​:
A. GMM考虑了数据的均值和方差。
B. GMM可以用EM算法求解。
C. GMM是一种软聚类方法。
D. GMM的计算成本比K-均值低。

答案​:​D


二、选项逐条解析

选项A:GMM考虑了数据的均值和方差
  • 正确性​:正确
  • 原理​:
    • GMM由多个高斯分布组成,每个高斯分布的概率密度函数为: \mathcal{N}(x \mid \mu_k, \Sigma_k) = \frac{1}{\sqrt{(2\pi)^d |\Sigma_k|}} \exp\left(-\frac{1}{2}(x-\mu_k)^T \Sigma_k^{-1}(x-\mu_k)\right)
    • GMM通过调整μk\mu_kμk​和Σk\Sigma_kΣk​来拟合数据的分布特征。
  • 比喻​:
    GMM像一个“多面手”,能同时用多个不同形状的“钟形罩子”(高斯分布)覆盖数据,每个罩子都有自己的位置(均值)和胖瘦(方差)。

选项B:GMM可以用EM算法求解
  • 正确性​:正确
  • 原理​:
    • GMM的求解需要估计隐变量(每个样本属于哪个高斯分布),这属于含隐变量的极大似然估计问题
    • EM算法(期望最大化算法)​的步骤:
      1. E步(Expectation)​​:计算每个样本属于各高斯分布的后验概率(即隐变量的期望)。
      2. M步(Maximization)​​:根据E步的结果,更新高斯分布的参数μk,Σk​和混合权重πk​。
    • 通过迭代E步和M步,模型参数逐步收敛。
  • 比喻​:
    EM算法是GMM的“导航仪”,先猜每个数据点属于哪个高斯分布(E步),再调整高斯分布的形状和位置(M步),直到找到最佳匹配。

选项C:GMM是一种软聚类方法
  • 正确性​:正确
  • 原理​:
    • 软聚类​:每个样本以概率形式归属于所有类别。例如,一个样本可能以0.7概率属于高斯分布1,0.3概率属于高斯分布2。
    • 硬聚类​:如K-均值,每个样本只能属于一个类别(距离最近的簇中心)。
    • GMM的隐变量后验概率(E步结果)直接体现了软聚类的特性。
  • 比喻​:
    GMM像一个“温柔的老师”,给每个学生(数据点)分配多个班级(高斯分布)的“入学概率”;而K-均值是“严厉的老师”,直接命令学生去一个固定的班级。

选项D:GMM的计算成本比K-均值低
  • 正确性​:错误
  • 原理​:
    • K-均值的计算成本​:
      • 每次迭代只需计算样本到簇中心的距离并分配簇标签,复杂度为O(nk)O(nk)O(nk)(nnn为样本数,kkk为簇数)。
    • GMM的计算成本​:
      • E步需计算每个样本对每个高斯分布的后验概率(涉及协方差矩阵求逆),复杂度为O(nkd2)O(nk d^2)O(nkd2)。
      • M步需更新均值、协方差矩阵和混合权重,复杂度为O(nkd2)O(nk d^2)O(nkd2)。
      • 协方差矩阵的维度d2d^2d2导致计算量显著高于K-均值。
  • 比喻​:
    K-均值是“快餐店”,快速给顾客分配座位;GMM是“米其林餐厅”,需要精细调整每道菜的配方(参数),计算量大得多。

三、为什么说GMM的原始思路“有点像K-means”?​

1. 相似性
  • 核心目标​:两者都是无监督学习的聚类方法,目标是将数据划分为不同的组(簇)。
  • 迭代优化​:
    • K-means通过迭代更新簇中心(均值)来最小化样本到簇中心的距离。
    • GMM通过EM算法迭代更新高斯分布的参数(均值、协方差、混合权重)来最大化似然函数。
  • 初始参数敏感​:两者的结果都可能因初始参数不同而收敛到局部最优解。
2. 区别
特性K-meansGMM
聚类方式硬聚类(样本仅属于一个簇)软聚类(样本以概率属于多个簇)
模型复杂度仅用均值描述簇用均值、协方差矩阵、混合权重描述簇
优化目标最小化距离平方和(几何划分)最大化数据似然(概率分布拟合)
计算成本低(仅计算距离)高(涉及协方差矩阵和概率计算)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值