
AI
文章平均质量分 88
EricWang1358
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Business Administration or Learning or Training
同义替换:a growth mindset;同义替换:a growth mindset;原创 2025-07-10 15:36:33 · 765 阅读 · 0 评论 -
mathpix:AI驱动的 数学公式专精的 论文/文档转换神器
Mathpix 是一个基于先进人工智能技术的生态系统,专门为科学、技术、工程和数学(STEM)领域提供光学字符识别(OCR)和文档转换服务。该平台使用专门训练的机器学习模型,能够识别复杂的数学符号、化学公式、科学图表,并将其转换为 LaTeX、Markdown、DOCX、Excel 等多种可编辑格式。与传统的 OCR 工具不同,Mathpix 在数学内容识别方面能够达到高达 99% 的准确率,这得益于其在大量数学符号、科学公式和技术内容上的深度训练。原创 2025-07-08 15:45:49 · 605 阅读 · 0 评论 -
Dify? Make Difference! 初识教程
Dify是一个开源的大语言模型(LLM)应用开发平台,它为开发者提供了直观的可视化界面来构建复杂的AI工作流。本文将通过实际操作一个"Text Polishing"(文本润色)工作流,深入解析Dify平台的使用流程、核心思路以及实践中遇到的挑战。原创 2025-07-08 15:30:00 · 817 阅读 · 0 评论 -
AI Model Selection Guide: Choosing the Right Model for Your Use Case
Ask yourself these three key questions:Best For: Professional coding, enterprise applications, safety-critical tasksChoose When:Avoid When:Best For: Complex analysis, extended coding projects, research tasksChoose When:Avoid When:Best For: Mathematical rea原创 2025-07-04 12:04:46 · 633 阅读 · 0 评论 -
Claude sonnet 4‘s AI model evaluation
不得不承认,claude的对用户追问与需求明确非常impressive。原创 2025-07-04 12:04:20 · 1194 阅读 · 0 评论 -
AI PPT 调研心得:效率工具
总结:夸克:功能轻量化,10次免费下载次数,可手动修改文本内容,可一键更改页面布局。经过检验,两次prompt生成了同样模板的PPT(可能存在模板较少问题)独特优势:自动智能搜索配图+本身就是PPT编辑工具,可直接修改使用。独特优点:可以选中一页,然后改变其页面样式。亲民优点:每日有10次免费下载次数。自动生成了对应的大纲与PPT预览。Prompt框可选语言与配图来源。WPS 输入主题生成PPT。可选择,上传,自定义模板。本文无广,请放心食用。存在不合理的模板套用。缺点:功能本身需付费。原创 2025-07-01 17:10:47 · 1063 阅读 · 0 评论 -
AI搜索教程与体验
。原创 2025-07-01 13:53:30 · 918 阅读 · 0 评论 -
npx -y @executeautomation/playwright-mcp-server 卡住正常吗
这次使用V3,并明确指出使用playwright mcp server. 但是成功进入了搜索框输入步骤,但是缺乏后续。很好,改用R1模型虽然慢,但是一步一步到搜索MCP这一步了,成功调用了click组件。使用MCP playwright, 打开百度,搜索MCP, 获取目标网页的截图。我感觉这个有可能是“失败”的原因,它变成了一个端口,所以你会一直等而无所得。查找原因,因为并没有成功调用MCP server的,而是VScode自带的。换用V3,截图成功,但是依旧404。其它模型,依旧是指定了,也不会用。原创 2025-06-30 16:58:27 · 772 阅读 · 0 评论 -
k-means 聚类中影响结果的因素
。原创 2025-05-15 20:26:21 · 797 阅读 · 0 评论 -
Data - Review
本文解析了人工智能基础课程中的核心内容,重点围绕“数据”展开,涵盖了数据的定义、测量、探索和挖掘等关键概念。课程从数据的基本定义(如什么是数据)入手,逐步介绍了数据处理方法(如聚类、回归)和数据挖掘技术,形成完整的知识链。此外,文中还探讨了数据的类型(如数值型、分类型)、属性分类(如名义属性、序数属性)以及数据可视化工具(如条形图、词云等)。通过通俗易懂的解释和示例,帮助读者理解数据在人工智能中的重要性,并提供了相关的复习题以巩固知识点。总结部分强调了数据是AI的基础,正确区分属性类型对数据分析方法的选择至原创 2025-05-15 00:22:26 · 814 阅读 · 0 评论 -
PCA -Review
主成分分析(Principal Component Analysis,简称PCA)是一种统计方法,用于降维和特征提取。PCA广泛应用于图像处理、基因表达分析和金融数据分析等领域。PCA对异常值和非线性关系敏感,可能需要数据预处理。PCA的目标是最大化数据在新坐标轴上的方差,即。PCA可以用于数据可视化、噪声去除和特征提取。PCA假设数据的变化主要沿着少数几个方向发生。,第二主成分具有次大的方差,以此类推。,这些主成分捕捉了数据中最重要的变化。PCA是一种线性变换技术,用于将。原创 2025-05-14 20:24:03 · 195 阅读 · 0 评论 -
CNN _INTRO
卷积:局部探针,提取细节特征(像放大镜找线索)。池化:信息压缩,保留核心特征(像整理线索去冗余)。两者结合:构成CNN(卷积神经网络)的核心,让AI像人类一样“观察→思考→总结”。合并要点:局部感受野参数共享⇒ 控制参数规模,同时保留空间信息。零填充小滤波器⇒ 多层卷积后还能保持图像尺寸,方便深度堆叠。滑动窗口运算本质是向量的点积加偏置,简单而高效。卷积示例帮助理解单步操作:每次窗口移动产生一个数字,最终形成特征图。原创 2025-05-14 19:33:12 · 707 阅读 · 0 评论 -
CNN Receptive Field
这句话的意思是,在卷积神经网络中,每一层都会扩大其感受野(即网络能够"观察"到的输入图像范围)。根据公式计算,当网络层数L=7时,感受野大小r₀ = 2×7+1 = 15像素,这就意味着网络此时才能感知到宽度为15像素的数字。这也是深度学习模型需要多层结构来识别复杂模式的原因之一。原创 2025-05-14 17:53:10 · 218 阅读 · 0 评论 -
Deep Learning Intro
局部泛化:传统方法像“盲人摸象”,只能理解零散特征逐层抽象:深度学习像“搭积木”,从简单零件逐步构建完整认知本质突破:通过多层非线性变换,模型能从数据中自动发现规律,实现从“看到”到“理解”的跨越自动特征学习:从“像素打桩机”到“语义检测器”,一条龙服务。逐层抽象:深度网络天然对应人脑多层视觉加工机制。端到端:不拆分特征提取和分类,训练一个网络就能学到完整流程。原创 2025-05-14 16:46:24 · 645 阅读 · 0 评论 -
BP -1
ADALINE 的全称是。输入信号和目标输出都采用编码(如 −1-1 / +1+1)。:网络多层结构中,只有隐藏层 ADALINE 单元的权重会学习更新;输出层的连接权重保持固定。存在一个(bias),它和其它权重一样可以调整。激活函数是:通过最小化所有输出单元的其中总误差:ADALINE 不经过硬阈值,保留连续信号,适合回归或当作BP的隐藏层。:利用经典的梯度下降(delta 规则)来缩小预测(加权和)与真实值之间的平方差。原创 2025-05-14 15:38:21 · 837 阅读 · 0 评论 -
Review 神经网络概述
所以图片底部那句话"通过多个隐藏层,增加非线性转换次数",就是说让这些"煎饼师傅"多折腾几轮,才能做出让AI吃货满意的复杂美味。👉 每个师傅不只是简单传递食材(像普通流水线),还会"捣蛋":比如有的师傅把面糊摊成圆形,有的故意戳破气泡,有的把油条摆成花样——这就是"非线性转换"👉 师傅越多(隐藏层越多),能玩的花样就越复杂:可以发明天妇罗煎饼、榴莲煎饼、甚至会拉丝的芝士煎饼。2️⃣ 中间的小圆圈是师傅们(隐藏层):每个师傅负责不同工序——摊面糊、打鸡蛋、炸油条...:这就是神经网络成功的秘诀了。原创 2025-05-14 15:14:26 · 659 阅读 · 0 评论 -
回顾Loss Function
高斯分布(Gaussian distribution),也称为正态分布(Normal distribution)或钟形曲线,是一种连续概率分布,其特点是呈现出对称的钟形曲线。这种分布在自然界和社会科学中极为常见。μ(均值):分布的中心位置σ²(方差)或σ(标准差):分布的宽度或离散程度数学表达式为:图片中展示了卡尔·弗里德里希·高斯(1777-1855)的贡献,特别是他关于概率的定义主要体现在:误差理论:高斯提出了测量误差服从正态分布的理论。原创 2025-05-14 14:55:45 · 383 阅读 · 0 评论 -
ANN & Some Review
Hebb Net 定义单层前馈神经网络,使用扩展的 Hebb 规则训练。Application 1:实现 AND 函数(二值输入与目标)输入向量 (x1,x2,1)(x_1,x_2,1),目标输出(target)为 1 或 0。对每条样本,用 Δwi=xi y\Delta w_i = x_i\,y、Δb=y\Delta b=y 更新权重,反复迭代直到收敛。原创 2025-05-14 14:30:12 · 1025 阅读 · 0 评论 -
KNN SVM PCA SRC
你可以把 KNN 想象成“看邻居选归属”的算法:你搬到一个新小区,想知道你是被归为“打篮球的群体”还是“下围棋的群体”?你就看看你周围的 K 个邻居里谁最多,如果 3 个邻居里有 2 个爱下围棋,那你大概率也被归到这个圈子!“分类”其实就像你第一次见一个人,虽然你不知道他是谁,但你会根据他穿的衣服、说话口音、走路姿势来判断他是不是某个学校/社团/兴趣小组的。我们教“计算机”也这么干:用已经知道身份的样本(训练集)来训练它,之后它就能“靠特征猜身份”了。KNN 就像是“你是和谁最像的?原创 2025-05-12 23:01:36 · 963 阅读 · 0 评论 -
Dimensionality Reduction
PCA 就像一个聪明的压缩师傅,它会压缩你手里的数据:保留最重要的信息,去掉重复的东西,还能让你以后有可能把原来的信息大致恢复回来。方差(variance)衡量的是数据的发散程度。在一组数中,如果数值变化大,说明它们差异大、信息量也大;如果都差不多,那信息就比较“平”。概念直觉解释与 PCA 的关系方差大说明有变化、有信息PCA专挑这种方向来保留信息不相关不重复,独立的内容PCA找出的主轴彼此独立,信息无重复最小重建误差压缩后还原尽可能接近原图PCA提供误差最小的子空间。原创 2025-05-12 17:56:23 · 1128 阅读 · 0 评论 -
Pattern Recognition
👉这一部分讲的是“模式”到底是什么。你可以把“模式”想象成一种能反复出现的规律。比如:斑马身上的条纹,是视觉模式;你的声音,是音频模式;一个化学分子结构,是逻辑或结构模式。不管是彩虹、脚印,还是条形码,它们本质上都是一种有形、有规律、可以测量的“东西”。学 AI 的第一步,就是让机器“看懂”这些模式——不论是照片、声音、还是行为!很多时候,一个东西会因为角度不一样、大小不一样、位置不同而“变形”了,但我们人脑还是能认出来它是什么。原创 2025-05-12 16:19:05 · 1212 阅读 · 0 评论 -
Only Questions for mid
1. Answer the following questions:(a) There is no universal agreement on the definition of Artificial Intelligence. Considering how systems think and act, what are the four categories we can assign these AI systems to? Which of them is the most possible o原创 2025-03-19 10:06:12 · 1092 阅读 · 0 评论 -
Some more Ans
无论二叉树是否完全,BFS和DFS的节点生成数量和时间复杂度均为。原创 2025-03-19 10:06:04 · 785 阅读 · 0 评论 -
The 7 pairs of environment properties
这张图片系统化地归纳了人工智能领域中用于描述环境特征的七组关键属性对,以下是对每对属性的详细讲解:理解这些属性对有助于:① 准确描述问题特征② 选择合适算法架构(如 MDP/POMDP)③ 预测系统可能面临的挑战④ 设计有效的学习与决策机制这些维度构成了人工智能系统设计的基础框架,实际环境往往是多个属性的组合(如部分可观察+动态+多代理),需要综合运用不同技术手段应对。原创 2025-03-19 08:56:23 · 542 阅读 · 0 评论 -
TUT _A
通过系统化的目标与问题制定,代理能在复杂环境中高效生成并执行解决方案。这是人工智能从理论到实践的核心桥梁。原创 2025-03-19 01:18:51 · 880 阅读 · 0 评论 -
搜索算法-Keys
图中揭示了传统优化方法在复杂状态空间中的局限性,而现代启发式算法通过引入。原创 2025-03-18 23:51:03 · 900 阅读 · 0 评论 -
PL Qs
逻辑中的条件命题(Implication)与自然语言中的“如果…”不同,其真值仅取决于命题的真假组合,而非因果关系。通过以上步骤,可将任意命题逻辑公式转换为标准的合取范式(CNF),便于后续的自动推理或算法处理。:转换为CNF形式。:转换为CNF形式。原创 2025-03-18 21:07:27 · 905 阅读 · 0 评论 -
Review from Qs: FOL
通过解方程和寻找反例判断存在性和全称性命题的真假。原创 2025-03-18 20:29:34 · 915 阅读 · 0 评论 -
L7.1 : First‐Order Logic (FOL)
基例m + 0 = m(任何数加0等于自身)。递归分解(把加法转化为不断求“下一个数”)。示例:计算2+3(即):= S(S(3))= S(4)= 5解读对任意坐标[x,y],其相邻方格[a,b]必须满足坐标差为±1(上下左右相邻)。变量角色x,y和a,b是坐标参数,用于定义相邻关系;s和r是方格实例变量,用于描述方格属性。原创 2025-03-18 20:08:24 · 868 阅读 · 0 评论 -
Logical Agent
这一系列幻灯片主要介绍了。原创 2025-03-18 18:14:38 · 762 阅读 · 0 评论 -
L5: Design, Properties, Examples, and Applications of Constraint Satisfaction Problems (CSP)
在CSP的深度优先搜索(DFS)中,。原创 2025-03-18 15:32:02 · 1004 阅读 · 0 评论 -
L4.3 Genetic Algorithm
遗传算法(GA)通过迭代优化模拟生物进化。:偶尔给答案“微调”,比如突然改一个参数或调换两个步骤。遗传算法像生物进化一样不断改进答案。:像“拼图游戏”一样,把两个答案的片段拼起来。该图片聚焦遗传算法(GA)的。(交叉与变异)及其。原创 2025-03-17 23:24:38 · 565 阅读 · 0 评论 -
L4.2 Local Search(局部搜索)
局部搜索是一种。原创 2025-03-17 23:16:00 · 1159 阅读 · 0 评论 -
L4.1Informed Search
在人工智能的搜索算法中,启发式搜索(Informed Search)是相对于无信息搜索(Uninformed Search)的一种改进方法。它利用问题的。原创 2025-03-17 22:52:04 · 1243 阅读 · 0 评论 -
L3.2 Uninformed Search Strategy- Key Points
搜索策略的核心矛盾“快和省内存不可兼得”——想要快(DFS),可能绕路;想要省内存(DFS),可能不最优;想要又省内存又最优(迭代加深),就得牺牲时间。实际应用导航软件用均一成本(Dijkstra/A*)找最短路径;游戏AI用BFS/DFS生成地图;智能客服用深度限制搜索快速回答用户问题。原创 2025-03-17 22:22:23 · 837 阅读 · 0 评论 -
无信息搜索策略 (Uninformed Search Strategy)+ BFS 和 DFS 评价及一致代价搜索(UCS)
选择一个选项进行探索。如果第一个选择不正确,则保留其他选项以供后续检查。所有的搜索方法都使用这种基本搜索策略。问题:应该先选择哪个选项?原创 2025-03-17 22:22:13 · 1158 阅读 · 0 评论 -
L3.1-Solving Problems by Searching-Part One Keys
Bucket ProblemProblem FormulationDriving ProblemProblem-Solving AgentDriving from Beijing to Shanghai (Fundamentals of Artificial Intelligence - Lecture 3 Summary)📝 Exam Tip: Be able to define a goal in a given problem scenario.📝 Exam Tip: Be able to des原创 2025-03-17 17:00:27 · 1004 阅读 · 0 评论 -
L3.1-Solving Problems by Searching
这就是 AI 问题求解的基本流程,类似于 GPS 导航、机器人路径规划、游戏 AI 等场景。原创 2025-03-17 17:00:15 · 980 阅读 · 0 评论 -
人工智能基础——智能体(Agent)概述
智能体是一种可以感知环境并对其做出反应的系统。它通过**传感器(Sensors)感知周围环境,并利用执行器(Actuators)**进行操作和决策。智能体的核心在于其具备一定的智能,能够基于输入做出合理的输出。智能体的三大类别:人类智能体(Human Agent)传感器:眼睛、耳朵、皮肤等感官器官执行器:手、腿、声带等硬件智能体(Hardware Agent)传感器:摄像头、红外测距仪等执行器:马达、机械臂等软件智能体(Software Agent)传感器:键盘输入、网络数据包、文件内容。原创 2025-03-17 15:43:49 · 1482 阅读 · 0 评论 -
L2-Keys
【代码】L2-Keys。原创 2025-03-17 15:37:55 · 530 阅读 · 0 评论