
Machine Learning
文章平均质量分 78
EricWang1358
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
ILP Sample
分支定界法是解决整数线性规划问题的有效算法,其核心思想是通过递归分割问题空间并结合上下界信息来排除不可能包含最优解的分支。原创 2025-05-30 18:29:50 · 844 阅读 · 0 评论 -
overfitting -hidden sample question with logistic regression
原创 2025-05-16 01:21:56 · 195 阅读 · 0 评论 -
哪种策略可以减少参数模型的过拟合?
D. 使用二阶优化算法代替梯度下降或随机梯度下降。:1.6 哪种策略可以减少参数模型的过拟合?B. 在损失函数中添加正则化项。C. 考虑复杂的假设模型。A. 减少训练样本数量。原创 2025-05-16 00:24:09 · 288 阅读 · 0 评论 -
GMM sample question
:关于高斯混合模型(GMM),以下哪一说法是错误的?A. GMM考虑了数据的均值和方差。D. GMM的计算成本比K-均值低。B. GMM可以用EM算法求解。C. GMM是一种软聚类方法。原创 2025-05-17 01:00:00 · 475 阅读 · 0 评论 -
自学无果了,找到了stanford的SEE网站,万一将来想自学呢
一阶:E二阶的公开课程平台,主要提供该校计算机科学、电子工程、逻辑学等领域的课程资源。原创 2025-05-15 23:53:50 · 791 阅读 · 0 评论 -
如何快速区分confusion matrix的 precision 和 accuracy 和 Recall
要快速区分混淆矩阵中的 和 。原创 2025-05-15 23:42:38 · 727 阅读 · 0 评论 -
logistic regression sample question
真正弄懂逻辑回归模型,逻辑回归详解_哔哩哔哩_bilibili 选项A:选项B:选项C:选项D:原创 2025-05-15 23:38:18 · 126 阅读 · 0 评论 -
SVM tutorial
Lagrange duality 在下面这个的第5节,还有KKT,有点折磨了,感觉把large margin背了差不多了,这分暂时不要也罢。SVM large margin 推导:(下面这个第一个视频讲的很牛)原创 2025-05-15 23:03:54 · 231 阅读 · 0 评论 -
Bias Variance Noise MSE
下图通过,生动展示了偏差(Bias)与方差(Variance)对机器学习模型误差的影响。原创 2025-05-15 22:06:07 · 748 阅读 · 0 评论 -
Tree-based Methods:Classifcation Tree
如果另一个属性“形状”的信息增益更大(比如0.3),则优先选“形状”作为根节点。你的第二张图题目要求用熵方法选根节点属性(比如颜色、形状、大小)。(你第一张图的公式)本质上在计算这种“混乱程度”,数学上通过。想象你有一筐混杂的红苹果和青苹果(二分类问题)。原创 2025-05-15 20:08:26 · 772 阅读 · 0 评论 -
Performance Evaluation
在二分类任务中,阈值用于将模型输出的概率或分数转化为分类结果(正类/负类)。调整阈值会直接影响混淆矩阵中的。:模型在所有正负对上都能正确区分——无一失误。,从而改变模型的性能指标。:正例得分通常比负例高,模型比瞎猜强。:如何通过K折交叉验证调整超参数?:和你随便猜(相当于抛硬币)没差别。原创 2025-05-15 19:00:32 · 693 阅读 · 0 评论 -
ML L2 Review
原创 2025-05-09 18:44:24 · 98 阅读 · 0 评论 -
ML L1 Review
i.i.d. 是 "Independent and Identically Distributed" 的缩写,中文叫做“独立同分布”假设。Independent(独立)每个样本之间互不影响,比如你调查一堆学生的成绩,假设每个人的成绩都是“独立生成的”。Identically Distributed(同分布)每个样本都来自相同的概率分布。也就是说,不管是训练集还是测试集,数据的结构、规律是一样的。原创 2025-05-09 17:19:04 · 810 阅读 · 0 评论 -
Jupyter Notebook 介绍
是一个开源的交互式计算环境,广泛应用于数据科学、机器学习、数据可视化、教育等领域。它支持代码、文本、数学公式、数据表格、图像和可视化等内容的混合展示,提供了一个强大的工具来进行数据分析、模型开发、报告生成等任务。Jupyter Notebook 可以通过浏览器使用,支持多种编程语言,包括PythonRJulia和Scala等,但 Python 是最常用的语言。Jupyter 之所以受欢迎,主要得益于它的灵活性、可视化功能以及极简的用户界面,使得开发者、研究人员和数据科学家能够快速进行实验、分析和共享结果。原创 2025-03-06 20:15:28 · 947 阅读 · 0 评论 -
Unsupervised Learning
概念监督学习(Supervised Learning)无监督学习(Unsupervised Learning)输入数据输入数据与标签(正确答案)一起提供只有输入数据,没有标签目标根据已知标签学习预测结果无标签数据中发现潜在结构或规律任务回归(预测数值)、分类(预测类别)聚类(Clustering)、降维(Dimensionality Reduction)学习方式从数据中学习已标注的结果(正确答案)从数据中学习隐藏的结构或类别(没有标1. 聚类(Clustering)中文定义。原创 2025-03-06 20:07:25 · 851 阅读 · 0 评论 -
Supervised Learining
概念Regression(回归)Classification(分类)目标预测连续数值(如房价、温度)预测离散类别(如垃圾邮件/非垃圾邮件、猫/狗)输出类型实数(如50.2万、37.8℃)离散类别(如0/1、恶性/良性)应用场景房价预测、销售额预测、温度预测邮件分类、图片识别、情感分析关键数据训练集包含输入特征与目标数值训练集包含输入特征与对应的类别标签回归和分类是监督学习中的两大基础任务,回归处理连续型目标,而分类处理离散型目标。这张图展示了分类任务。原创 2025-03-06 16:05:24 · 1018 阅读 · 0 评论 -
Introduction to Machine Learning-1
给机器“带答案”的数据(训练集)。机器通过数据学习“规律”(目标函数)。测试机器学得好不好(测试集)。如果规律学得好,机器就可以用来预测未来的数据。3. 什么是无监督学习?无监督学习就像让学生自己去发现规律,而不给他们答案。例如,你给学生一堆水果,但不告诉他们是“苹果”还是“橙子”。学生可能会根据形状和颜色把水果分成两组:一种是圆形的(橙子),一种是椭圆形的(苹果)。无监督学习中的基本概念无监督学习中,数据是没有标签的(比如水果图片),机器只能看到水果的“特征”(形状、颜色等)。原创 2025-01-10 11:12:09 · 787 阅读 · 0 评论