PRF的构造与安全性分析
1. 问题背景
给定一个PRF(伪随机函数):F:{0,1}ⁿ × {0,1}ⁿ → {0,1}ⁿ,
考虑以下三种构造新函数F’:{0,1}ⁿ × {0,1}ⁿ⁻¹ → {0,1}²ⁿ的方式,并证明它们都不是PRF。
(1) F’ₖ(x) = Fₖ(0||x)||Fₖ(0||x)
(2) F’ₖ(x) = Fₖ(0||x)||Fₖ(x||0)
(3) F’ₖ(x) = Fₖ(0||x)||Fₖ(x||1)
其中:
1.k是n位密钥
2.x是(n-1)位输入
3.||表示比特串连接
函数表示的详细解释:
F:{0,1}ⁿ × {0,1}ⁿ → {0,1}ⁿ 表示:
第一个{0,1}ⁿ:密钥空间,n位二进制串
×:笛卡尔积,表示(密钥,输入)对
第二个{0,1}ⁿ:输入空间,n位二进制串
→:映射到
第三个{0,1}ⁿ:输出空间,n位二进制串