数据可视化-Matplotlib绘制可视化图表

本文围绕Matplotlib绘制可视化图表展开实验。介绍了Matplotlib原理,它是Python可视化基础库。详细阐述实验步骤,包括环境准备,绘制柱形图、条形图等基础图表,配置图表元素,以及处理多图、不均匀子图、双Y轴等复杂场景,旨在提升学生绘图熟练度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据可视化

Matplotlib绘制可视化图表

一、实验名称

Matplotlib绘制可视化图表

二、实验目的

通过该实验的实践,要求学生能够熟练使用Matplotlib基本图表的可视化展示,掌握使用这工具绘制图表的一般化流程,掌握使用Matplot实现特征分析,掌握使用Matplotlib实现数据分布情况分析,以及基于Matplotlib的复杂场景应用等。

三、实验原理

Matplotlib 是 Python 的可视化基础库,作图风格和 MATLAB 类似,所以称为 Matplotlib

python中的很多可视化库都基于Matplotlib进行了封装,如Seaborn 是一个基于 Matplotlib 的高级可视化效果库,针对 Matplotlib 做了更高级的封装,让作图变得更加容易。你可以用短小的代码绘制更多维度数据的可视化效果图。

使用matplotlib可以展示可视化的多种基本图表

四、实验步骤

1、打开终端Terminal,准备执行安装命令行

2、环境准备

2.1 打开jupyter

在打开的浏览器中,新建python3文件

3、基础图表

柱形图

柱形图通常用于直观的对比数据,在实际工作中使用频率很高,在Matplotlib中可以通过bar()即可绘制出柱形图。

import matplotlib.pyplot as plt
plt.bar([1, 2, 3, 4], [1, 4, 2, 3])  # 绘制图像
plt.show()

如果想修改柱子的颜色,宽度,可以通过color和width参数进行修改;

color:支持通过代码快速配置常见的颜色,如r代表红色,blue代表蓝色,也支持十六进制和RGB(A)格式颜色配置;

width:数值范围0-1,默认0.8;

import matplotlib.pyplot as plt
plt.bar([1, 2, 3, 4], [1, 4, 2, 3], color=(0.2, 1.0, 1.0), width=0.5)  # 绘制图像
plt.show()
条形图

条形图同样常用来进行数据的对比展示,可以简单看作是柱形图经过翻转90度后的图表,使用barh()可以进行条形图的绘制;

import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = 'Microsoft YaHei'
plt.barh(["深圳", "广州", "北京", "上海"], [1, 4, 2, 3])  # 绘制图像
plt.show()

需要注意,当柱子翻转过来之后,修改柱子的“宽度”在条形图从参数width变成了height;

import matplotlib.pyplot as plt
plt.barh(["深圳", "广州", "北京", "上海"], [1, 4, 2, 3], height=0.5, color="#0aff00")  # 绘制图像
plt.show()
折线图

折线图通常用于展示一段时间内的趋势,可以通过plot进行折线图的绘制;

import matplotlib.pyplot as plt
plt.plot([1, 2, 3, 4], [1, 4, 2, 3])  # 绘制图像
plt.show()

通过linewidth和linestyle可以进行线宽和线型的配置;

linestyle可接受的参数如下:

至于展示出来是什么样式,大家可以依次去尝试一下

import matplotlib.pyplot as plt
plt.plot([1, 2, 3, 4], [1, 4, 2, 3], color='blue', linewidth=2, linestyle='-.')  # 绘制图像
plt.show()

通过marker和makersize可以绘制带标记点的折线图;

支持的maker样式如下:

输出为:

import matplotlib.pyplot as plt
pl
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值