数据可视化
Matplotlib绘制可视化图表
一、实验名称
Matplotlib绘制可视化图表
二、实验目的
通过该实验的实践,要求学生能够熟练使用Matplotlib基本图表的可视化展示,掌握使用这工具绘制图表的一般化流程,掌握使用Matplot实现特征分析,掌握使用Matplotlib实现数据分布情况分析,以及基于Matplotlib的复杂场景应用等。
三、实验原理
Matplotlib 是 Python 的可视化基础库,作图风格和 MATLAB 类似,所以称为 Matplotlib
python中的很多可视化库都基于Matplotlib进行了封装,如Seaborn 是一个基于 Matplotlib 的高级可视化效果库,针对 Matplotlib 做了更高级的封装,让作图变得更加容易。你可以用短小的代码绘制更多维度数据的可视化效果图。
使用matplotlib可以展示可视化的多种基本图表
四、实验步骤
1、打开终端Terminal,准备执行安装命令行
2、环境准备
2.1 打开jupyter
在打开的浏览器中,新建python3文件
3、基础图表
柱形图
柱形图通常用于直观的对比数据,在实际工作中使用频率很高,在Matplotlib中可以通过bar()即可绘制出柱形图。
import matplotlib.pyplot as plt
plt.bar([1, 2, 3, 4], [1, 4, 2, 3]) # 绘制图像
plt.show()
如果想修改柱子的颜色,宽度,可以通过color和width参数进行修改;
color:支持通过代码快速配置常见的颜色,如r代表红色,blue代表蓝色,也支持十六进制和RGB(A)格式颜色配置;
width:数值范围0-1,默认0.8;
import matplotlib.pyplot as plt
plt.bar([1, 2, 3, 4], [1, 4, 2, 3], color=(0.2, 1.0, 1.0), width=0.5) # 绘制图像
plt.show()
条形图
条形图同样常用来进行数据的对比展示,可以简单看作是柱形图经过翻转90度后的图表,使用barh()可以进行条形图的绘制;
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = 'Microsoft YaHei'
plt.barh(["深圳", "广州", "北京", "上海"], [1, 4, 2, 3]) # 绘制图像
plt.show()
需要注意,当柱子翻转过来之后,修改柱子的“宽度”在条形图从参数width变成了height;
import matplotlib.pyplot as plt
plt.barh(["深圳", "广州", "北京", "上海"], [1, 4, 2, 3], height=0.5, color="#0aff00") # 绘制图像
plt.show()
折线图
折线图通常用于展示一段时间内的趋势,可以通过plot进行折线图的绘制;
import matplotlib.pyplot as plt
plt.plot([1, 2, 3, 4], [1, 4, 2, 3]) # 绘制图像
plt.show()
通过linewidth和linestyle可以进行线宽和线型的配置;
linestyle可接受的参数如下:
至于展示出来是什么样式,大家可以依次去尝试一下
import matplotlib.pyplot as plt
plt.plot([1, 2, 3, 4], [1, 4, 2, 3], color='blue', linewidth=2, linestyle='-.') # 绘制图像
plt.show()
通过marker和makersize可以绘制带标记点的折线图;
支持的maker样式如下:
输出为:
import matplotlib.pyplot as plt
pl