如果想要了解什么是哈希表的话,可以看这个文章:
接下来我就用力扣的例题来说明哈希表的算法:
题目一:两数之和:
这道题一开始我们会使用暴力的遍历O(n^2)来解决问题,暴力的代码如下:
作者:力扣官方题解
链接:https://leetcode.cn/problems/two-sum/solutions/434597/liang-shu-zhi-he-by-leetcode-solution/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
class Solution {
public:
vector<int> twoSum(vector<int>& nums, int target) {
int n = nums.size();
for (int i = 0; i < n; ++i) {
for (int j = i + 1; j < n; ++j) {
if (nums[i] + nums[j] == target) {
return {i, j};
}
}
}
return {};
}
};
但是这个算法的时间复杂度比较高,所以我们使用了哈希表减少时间复杂度,我们首先使用了一个unordered_map<int, int>来保存某一个值所在的位置,当我们遍历这个哈希表时,对于每一个x,我们都会查找是否有target-x,如果有的话,就返回{target-x,x},如果没有的话,就保存x在哈希表中。
代码如下:
class Solution {
public:
vector<int> twoSum(vector<int>& nums, int target) {
unordered_map<int, int> hashtable; // 以值为first,索引为second的哈希表
for(int i = 0; i < nums.size(); i++){
auto it = hashtable.find(target - nums[i]); // 查看有没有与当前数字形成组合的数字
if(it != hashtable.end()){
return {it->second, i}; // 返回结果
}
hashtable[nums[i]] = i; // 如果没有的话,先标记这个数字的存在
}
return {};
}
};
第二题:字母字母异位词分组
链接如下:
这个题目真的很难懂,其实他的意思就是说“把字母数量相同的字符串分到一组”,比如['ant','tan']都是有一个a,一个n和一个t。["ate","eat","tea"]都是一个a,一个e,一个t,所以分到一组。
所以我们需要利用以异位词为键,符合异位键的列表为值的哈希表。
1.创建以异位词为键,符合异位键的列表为值的哈希表,和符合异位词的字符串列表。
2.遍历传入的字符串列表,记录每一个字符串的共同点,并加入到这个共同点的列表中
3.将每一个共同点的列表加入到ans中,最后返回ans
class Solution {
public:
vector<vector<string>> groupAnagrams(vector<string>& strs) {
vector<vector<string>> ans;
unordered_map<string, vector<string>> hashtable; // 以异位词为键,符合异位键的列表为值的哈希表
for(auto &str : strs){
string res = str;
sort(res.begin(), res.end()); // 进行排序,获得他们的共同点
hashtable[res].emplace_back(str); // 将该字符串加入到这个共同点的列表中。
}
for(auto it = hashtable.begin(); it != hashtable.end(); it++){
ans.emplace_back(it->second);
}
return ans;
}
};
第三题:最长连续序列:
这道题需要注意的是我们首先需要对这个列表进行去重,然后我们遍历以每一个不同的数字num为开头的情况,获取它们每一次的最长序列长度,最大的那个即为答案。
代码如下:
class Solution {
public:
int longestConsecutive(vector<int>& nums) {
unordered_set<int> numSet;
for(const int& num : nums){
numSet.insert(num);
}
int longest = 0; // 初始化最长子序列长度
for(const int& num : numSet){ // 开始遍历哈希表
if(!numSet.count(num-1)){
// 如果num-1不在哈希表中
int currentNum = num; // 表示当前数字作为子序列的头
int currentStreak = 1; // 当前连续序列长度
while(numSet.count(currentNum + 1)){
// 如果数字+1在哈希表中,更新当前连续序列长度
currentNum++;
currentStreak++;
}
longest = max(currentStreak, longest); // 更新最长连续序列长度
}
}
return longest;
}
};
写在最后:
我们可以在这里学习C++知识: