写在前面
给我的往年题整理引个流嘿嘿
山东大学软件学院2024-2025人工智能导论期末回顾-CSDN博客
个人观点:这次考试给我的感觉是意料之外又是意料之中,怎么说呢,意料之中的是这次的题跟往年题不一样,因为我们上一级的期末考试题就跟前几年的非常不一样,所以其实还是有所准备的,但是又是意料之外的,因为他考的也太不一样了,考的非常细节,还是招架不太住哈哈哈
以下是我自己整理的一些知识点,仅供参考~需要的可自取!
链接:https://pan.baidu.com/s/1eUZ1vSuMEHdKDO4VsA7qzA?pwd=kol7
提取码:kol7
第一章 绪论
人工智能的含义
人工智能是用人工的方法在机器(计算机)上实现的智能,也称为机器智能
目标:是用机器实现人类的部分智能
//人工智能的特点
具有感知能力、记忆与思维能力、学习能力、行为能力
思维可分为逻辑思维、形象思维以及顿悟思维
人工智能的发展阶段
发展历史可归结为孕育、形成和发展三个阶段
孕育(1956年以前):提出演绎推理、归纳法,第一台电子计算机诞生
形成(1956-1969):在1956年召开的一次学术研讨会标志着人工智能新学科的诞生,并在10年间机器学习、定理证明、模式识别、问题求解、专家系统以及人工智能语言方面取得众多成就
发展(1970年以后):人工智能发展遇到瓶颈,专家系统在多个领域取得重大突破
大数据驱动人工智能发展期(2011年以后):人工智能进入以深度学习为代表的大数据驱动人工智能发展期(大数据-----驱动------>人工智能)
人工智能研究的基本内容
包含知识表示、机器感知、机器思维、机器学习、机器行为
- 知识表示:知识表示方法可分为符号表示法和连接机制法
符号表示法:是用各种包含具体含义的符号,以各种不同的方式和顺序组合起来表示方法的一类方法(符号------------表示---------->方法)
连接机制法:是用神经网络表示知识的一种方法(神经网络---------表示--------->知识)
- 机器感知:是使机器(计算机)具有类似于人的感知能力,以机器视觉和听觉为主
- 机器思维:是指对通过感知得来的外部信息以及机器内部的各种工作信息进行有目的的处理(感知到的信息---有目的处理--->)
- 机器学习:是研究如何使计算机具有类似于人的学习能力--->是他能通过学习自动的获取知识
- 机器行为:与人的行为能力相对应,及其行为主要指计算机的表达能力,即“说”、“写”、“画”等能力
//人工智能的主要研究领域
自然定理证明、博弈、模式识别、机器视觉、机器翻译、自然语言理解、智能信息检索、数据挖掘与知识发现、专家系统、自动程序设计、机器人、组合优化、人工神经网络等(感觉只记一两个就行)
弱人工智能、强人工智能
弱人工智能:指不能真正实现推理和解决问题的智能机器,这些机器表面看像是智能的,但是并不真正拥有智能,也不会有自主意识。
强人工智能:指真正能思维的智能机器,并且认为这样的机器是有知觉的和自我意识的,这类机器可分为类人(机器的思考和推理类似人的思维)与非类人(机器产生了和人完全不一样的知觉和意识,使用和人完全不一样的推理方式)两大类。
第二章 知识表示与知识图谱
//知识的概念
1.知识是长期的生活及社会实践中、在科学研究及实验中积累起来的对客观世界的认识与经验
2.它也是把有关信息关联在一起所形成的信息结构(有关信息-----关联形成----->信息结构)
3.知识反映了客观世界中事物之间的关系,不同事务或者相同事物间的不同关系形成了不同的知识
//知识的特性
相对正确性、不确定性、可表示性与可利用性
相对正确性:任何知识都是在一定的条件及环境下产生的,在这种条件及环境下才是正确的。(三角形内角和180度)
不确定性:由随机性、模糊性、经验性、以及不完全性引起的不确定性(不确定性的原因)
可表示性与可利用性:知识可以用适当形式表示出来,如用语言、文字、图形等(可表示性);知识可以被利用(可利用性)
//知识表示
将人类知识形式化或模型化。是对知识的一种描述
选择知识表示方法的原则
(能表示-》能利用-》能组织维护管理-》能理解实现)
- 充分表示领域知识
- 有利于对知识的利用
- 便于对知识的组织、维护和管理
- 便于理解与实现
产生式系统
由规则库、控制系统(推理机)、综合数据库三部分组成
规则库:用于描述相应领域内知识的产生式集合
推理机:由一组程序组成,除了推理算法,还控制整个产生式系统的运行,实现对问题的求解,推理机要进行推理、冲突消解、执行规则、检查推理终止条件等工作
综合数据库:用于存放问题求解过程中各种当前信息的数据结构(如初始状态、原始证据、中间结论、最终结论)