自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(215)
  • 收藏
  • 关注

原创 深度拆解:AI Agent发展演练·数字挑战

前引:“”从英语翻译过来就是代理、中介的意思,它描述了一种拥有欲望、信念、意图以及采取行动能力的载体。在计算机科学与人工智能领域中,“Agent”又是如何的呢?下面跟着我一起来看看吧!

2025-06-05 00:05:25 945

原创 大模型(LLMs)RAG 版面分析——表格识别方法篇

表格识别包括表格检测和表格结构识别两个子任务。表格定位(Table Localization):此阶段涉及识别并划定表格的整体边界,采用的技术手段包括但不限于目标检测算法,如YOLO、Faster RCNN或Mask RCNN,甚至有时借助生成对抗网络(GAN)来精确勾勒出表格的外在轮廓。本文介绍了大模型(LLMs)RAG 版面分析中的表格识别方法。首先,阐述了表格识别的重要性及其面临的挑战。接着,详细介绍了表格识别任务的两个子任务:表格检测和表格结构识别。

2025-06-04 23:53:11 911

原创 什么是大模型?一图全面了解大模型,附国内外知名大模型及240余家大模型清单!

AI大模型是“大数据+大算力+强算法”结合的产物,是一种能够利用大数据和神经网络来模拟人类思维和创造力的人工智能算法。它利用海量的数据和深度学习技术来理解、生成和预测新内容,通常情况下有数百亿乃至数万亿个参数,可以在不同的领域和任务中表现出智能。

2025-06-04 23:26:53 947

原创 【机器学习】音乐与AI的交响:机器学习在音乐产业中的应用

😎 作者介绍:资深程序员,从业10年+、互联网系统架构师,目前专注于AIGC的探索(CSDN博客之星|AIGC领域优质创作者)💘领取三大专属福利:1️⃣免费赠送AI+编程📚500本,2️⃣AI技术教程副业资料1套,3️⃣DeepSeek资料教程1套🔥(限前500人)需要的朋友 点击下方👇👇👇【微信名片】,100%免费领取。

2025-06-04 23:14:27 1213

原创 Ollama部署大模型并安装WebUi

Ollama用于在本地运行和部署大型语言模型(LLMs)的工具,可以非常方便的部署本地大模型。

2025-06-04 23:02:18 761

原创 Applitools与AI图像识别技术在测试中的应用

Applitools是一个领先的视觉测试平台,通过集成强大的视觉验证能力,帮助团队实现跨平台、跨浏览器的UI测试自动化。其核心技术基于AI图像识别,能够模拟人眼的视觉识别过程,从而发现UI中的细微差异,不论这些差异是屏幕分辨率不同,还是在某些特定的浏览器或操作系统中导致的渲染问题。而AI图像识别技术,特别是计算机视觉技术的应用,在视觉测试中提供了前所未有的高效性。传统的视觉比较方法通常依赖于像素级的差异比较,但这种方法难以处理由于不同分辨率或显示设备造成的图像差异。

2025-06-04 22:48:24 862

原创 AI Agent调研--7种Agent框架对比!盘点国内一站式Agent搭建平台,一文说清差别!大家都在用Agent做什么?

官方GPTs商店:各大平台均设有官方GPTs应用商店,汇聚了琳琅满目的插件与模型,满足多元化需求。知识库:在知识库构建上,各平台展现独特风采,内容既广泛又深入,助力用户轻松获取所需信息。流程图编排功能作为标配,让无编程基础的用户也能通过直观拖拽,迅速构建高效工作流,实现流程自动化。对于模型支持,部分平台展现开放姿态,兼容多模型选择;而有的则专注于自家大模型深度优化,但无论哪种,均能有效支撑日常工作的顺利进行。

2025-06-04 22:31:10 817

原创 优云智算:借助强大镜像社区,开启AI算力新纪元!

在当今数字化时代,云计算已成为推动企业创新与发展的强大动力。它以其卓越的成本效益,为企业节省了大量硬件投资与运维成本,让资源按需分配、灵活伸缩,完美契合业务的动态需求。其高度可靠的基础设施和先进的容错机制,确保了服务的持续可用性,让企业的数据安全无忧。同时,云计算的高效部署与自动化管理,极大地提升了工作效率,让企业能够快速响应市场变化,加速数字化转型的步伐。此外,云计算平台提供的丰富应用与服务,如人工智能、大数据分析等,为企业提供了强大的技术支持,助力企业在全球范围内拓展业务,实现高效服务。

2025-05-22 00:12:32 615

原创 什么是大模型?一文读懂大模型的基本概念

大模型通过训练海量数据来学习复杂的模式和特征,具有更强大的泛化能力,可以对未见过的数据做出准确的预测。引申到模型层面,涌现能力指的是当模型的训练数据突破一定规模,模型突然涌现出之前小模型所没有的、意料之外的、能够综合分析和解决更深层次问题的复杂能力和特性,展现出类似人类的思维和智能。ChatGPT对大模型的解释更为通俗易懂,也更体现出类似人类的归纳和思考能力:大模型本质上是一个使用海量数据训练而成的深度神经网络模型,其巨大的数据和参数规模,实现了智能的涌现,展现出类似人类的智能。

2025-05-22 00:08:27 616

原创 人工智能大模型多场景应用原理解析

在上篇文章《人工智能大模型之ChatGPT原理解析》中分享了一些大模型之ChatGPT的核心原理后,收到大量读者的反馈,诸如:在了解了核心原理后想进一步了解未来的发展趋势(比如生成式人工智能和元宇宙能擦出什么样的火花?),大模型如何优化现有技术(如:如何提高图像文档识别准确率等)…近期有幸参加了中国图像图形学学会和合合信息共同举办的CSIG企业行活动,对活动中的干货自己花了一些精力进行系统性研究与整理,在此与大家共享。

2025-05-21 23:16:22 676

原创 一站式开源AI平台Cherry Studio本地部署与远程调用本地大模型

本文主要介绍如何在 Windows 系统电脑本地安装开源 AI 客户端 Cherry Studio,并结合 cpolar 内网穿透工具轻松实现随时随地远程调用本地部署的各种 AI 大语言模型,无需公网 IP,也不用准备云服务器那么麻烦。Cherry Studio 是一款支持多个大语言模型(LLM)服务商的桌面客户端(如 OpenAI、Gemini、Anthropic)以及本地模型(通过 Ollama 等运行),兼容 Windows、Mac 和 Linux 系统。

2025-05-21 23:12:31 716

原创 一份全面的大模型「幻觉」综述

,来自腾讯AI实验室和一些国内大学的研究团队,综述提出了LLM幻觉现象的分类法和评估基准,分析旨在减轻LLM幻觉的现有方法,并确定未来研究的潜在方向。将重点放在解决与数据相关的幻觉、与训练相关的幻觉和与推理相关的幻觉的方法上,每种方法都提供了量身定制的解决方案,以应对各自原因所固有的特定挑战。)从LLM幻觉的创新分类方法出发,深入探究了可能导致幻觉的因素,并对检测幻觉的方法和基准进行了概述。目前在LLM幻觉问题上已经有无数的研究,比如关于幻觉的检测、幻觉的评估基准分类、缓解幻觉的方法等。

2025-05-21 23:09:05 640

原创 【拥抱AI】Xinference 详细介绍

Xinference(Xorbits Inference)是一个高性能的分布式推理框架,它能够支持大规模语言模型(Large Language Models, LLMs)、语音识别模型、多模态模型等各种人工智能模型的推理。Xinference 提供了易于使用的接口,包括Web图形用户界面(WebGUI)和RESTful API,以及命令行工具,使得用户可以轻松部署和管理模型.Xinference 是一个强大的开源语言模型框架,集成了多个大规模预训练模型,支持多种自然语言处理任务。

2025-05-21 23:05:17 724

原创 【TEE】可信执行环境保障大模型安全

当交换完成时,GPU 驱动程序和 SEC2 都持有相同的对称会话密钥。在大模型公有云服务方面,以百度、阿里等为代表的互联网与云服务公司,从大模型全生命周期视角出发,涵盖大模型训练、精调、推理、大模型部署、大模型运营等关键阶段面临的安全风险与业务挑战,在自有技术体系内进行深入布局,探索打造安全产品与服务。360等第三方独立的人工智能与安全科技公司,探索“以模型管理模型”方式,打造以大模型为核心的AI Agent(AI智能体),带入企业真实安全运营场景中,以“虚拟安全专家”的形象,满足企业对安全业务的需求。

2025-05-21 23:01:35 1038

原创 『保姆级』大模型教程来了(从入门到实战)

2023年大西洋彼岸的OpenAi公司,AI大模型,正在构建的颠覆力,为了更好的入局AI大模型,,包含??压缩技术中,为什么量化要优于剪枝、蒸馏???如何搜索裁剪阈值用于裁剪outlier???包含有异常值outlier的特征如何量化???模型剪枝的技术背景??模型剪枝具体方法??模型剪枝前沿方法??语言模型剪枝实例??AI作画–以文生图??扩散模型是什么??扩散模型工作拓展??扩散模型带来的机遇??RLHF的优点和挑战??RLHF如何改善大模型性能??RLHF的实际应用案例??

2025-05-21 22:52:22 666

原创 Playwright + MCP:用AI对话重新定义浏览器自动化,效率提升300%!

Playwright + MCP的结合,标志着自动化领域从“代码驱动”向“AI驱动”的革命性转变。无论是测试工程师、开发人员还是数据分析师,均可借助这一技术栈大幅提升效率。

2025-05-21 22:48:39 1059

原创 NSFW的AI情感陪伴类在线工具如何做好SEO?

NSFW 是 “Not Safe For Work” 的缩写,意思是“不适合在工作场所浏览”。它通常用于标记包含以下内容的网络内容:色情内容:任何具有性暗示或露骨色情的内容。暴力内容:包含血腥、暴力或令人不安的场景。冒犯性内容:可能被认为是冒犯性的内容,例如仇恨言论、歧视或亵渎。

2025-05-21 22:45:03 970

转载 LLM+RAG:AI生成测试用例智能体平台「详细介绍」

AI生成测试用例智能体平台是一款基于人工智能技术的测试用例自动生成工具,利用RAG(检索增强生成)技术,能够结合项目相关知识文档和历史用例,智能生成高质量的测试用例。本平台适用于测试团队快速创建测试用例,提高测试效率和质量。

2025-05-21 22:41:06 818

原创 GPT-4.1 API 抢先开放!Cursor 已支持调用,开发者速来体验!

如果你是开发者,现在就能通过 API 调用 GPT-4.1,体验更强大的 AI 能力!知名开发者工具已第一时间集成 GPT-4.1,让编程、调试、文档生成更高效。但 GPT-4.1 API 到底有哪些提升?普通用户什么时候能用上?本文将为你一一揭秘!目前,OpenAI,暂未推出面向普通用户的 ChatGPT 版本。(OpenAI 通常会逐步推广,普通用户可能需要等待后续更新。作为一款 AI 驱动的代码编辑器,(如果你正在使用 Cursor,快去试试 GPT-4.1 的威力吧!

2025-05-21 22:37:25 734

原创 AI革命先锋:DeepSeek与蓝耘通义万相2.1的无缝融合引领行业智能化变革

结合使用,将会发挥更强的优势。通过蓝耘平台的高效数据处理、行业解决方案与DeepSeek强大的深度学习训练能力,开发者可以在数据准备和模型训练上省去大量的繁琐步骤,直接聚焦于模型的优化与应用,极大提升了人工智能项目的开发效率和应用效果。DeepSeek的强大之处在于其深度学习框架的兼容性和丰富的模型训练功能,使得用户能够轻松构建、训练和调优复杂的深度学习模型。为了帮助非专业的用户也能使用深度学习,DeepSeek还提供了AutoML功能,自动进行模型选择、训练和优化,大大降低了深度学习技术的使用门槛。

2025-05-21 22:12:02 679

原创 AI大模型推理过程与优化技术深度剖析

AI大模型的推理过程与优化技术是一个复杂而庞大的体系,涉及多个层面的技术和策略。通过深入研究和实践这些优化技术,我们可以不断提升AI大模型的推理效率和性能,为人工智能的广泛应用奠定坚实的基础。未来,随着技术的不断进步和创新,我们有理由相信AI大模型将在更多领域展现出其独特的魅力和价值。

2025-05-21 21:24:57 893

原创 AI大模型与小模型之间的“脱胎”与“反哺”(第一篇)

根据不同行业的相似性和层次关系,设计多层次的迁移学习框架。结合预训练的小型行业模型,将其底层权重或部分网络结构整合到大模型中,然后使用特定行业的数据对大模型进行微调,这样可以充分利用小模型在特定领域的学习成果。分析各个行业AI小模型的决策逻辑和因果关系,提炼出具有普适性的因果规律,并将其融入到AI大模型的设计和优化过程中,使其具备更强的跨行业推理和泛化能力。让大模型以一种连续的方式不断学习并整合来自各行业的小模型的知识,同时设计相应的机制防止遗忘旧知识,确保大模型能随着时间和新任务的增加而持续进化和改进。

2025-05-21 21:22:01 612

原创 AI大模型-800字讲明白

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2025-05-21 21:19:05 846

原创 AI 模型高效化:推理加速与训练优化的技术原理与理论解析

假设w已存储在存内计算芯片的电阻阵列中return simulate_analog_compute(w, x) # 调用硬件模拟函数存内计算vs传统计算对比表维度传统冯·诺依曼架构存内计算架构数据流向内存 总线 计算单元(多次搬运)存储单元直接计算(原地处理)能耗占比数据搬运占90%+搬运能耗降低90%算力密度约1.2TOPS/W(GPU)24TOPS/W(存内计算芯片)典型应用云端大模型推理(如GPT-4)边缘AI(智能手表、AR眼镜)

2025-05-21 21:15:15 782

原创 通过 MCP 实现 AI Agent 目前有哪些最佳实践?

通过(Model Context Protocol)实现AI Agent的最佳实践,目前已在工具集成、框架设计、开发模式等方面形成了多种创新方案。

2025-05-18 23:58:10 895

原创 蓝耘元生代引领AI开发新潮流:DeepSeek R1V3满血版亮相,开启高效应用新时代

蓝耘元生代推理引擎的推出,标志着AI应用开发进入了一个新的时代。从简易的大模型调用到智能客服系统的搭建,再到模型微调的定制化操作,蓝耘元生代为开发者提供了前所未有的便利和高效。而DeepSeek R1/V3满血版则进一步提升了平台的性能,满足了不同开发者和企业用户对更高性能AI服务的需求。如果你正在寻找一个强大且易用的AI开发平台,蓝耘元生代无疑是你不可错过的选择。立即注册,体验500万免费tokens~蓝耘元生代平台;IDE代码实现多问多答;chatbox。

2025-05-18 23:53:58 668

原创 端到端自动驾驶大模型:视觉-语言-动作模型 VLA

随着Nerf、3DGS技术的发展,感知道路结构的技术逐渐成熟,这减少了对百度、高德等高清地图的依赖,即使在普通导航地图区域也能感知标准的道路结构,大大提升了自动驾驶系统实用性。目标、障碍物检测和道路结构感知逐渐统一,但决策规划仍以Rule-based为主,导致算法迭代需要大量人力,代码复杂且泛化能力有限。随着Tesla FSD v13版本的发布,基于强化学习的决策规划算法有潜力超越经过大量人力资源精心打磨的规则式算法,而且感知和规划可以融合为一个AI模型,即端到端自动驾驶大模型。

2025-05-18 23:49:03 687

原创 深度拆解:AI Agent发展演练·数字挑战

前引:“”从英语翻译过来就是代理、中介的意思,它描述了一种拥有欲望、信念、意图以及采取行动能力的载体。在计算机科学与人工智能领域中,“Agent”又是如何的呢?下面跟着我一起来看看吧!

2025-05-18 23:44:27 360

原创 挑战用AI替代我的工作——从抢券困境到技术突破

经过一系列的尝试和优化,最终,我成功利用AI影刀脚本抢到了心仪的券,并顺利找到了拼单的伙伴。这一过程不仅让我感受到了技术的力量,也让我深刻认识到,合理利用AI工具能够为我们解决实际问题提供强大的支持。明确需求:在使用自动化工具之前,需要清楚地了解自己的需求,例如抢券时所需的点击速度、持续时间和目标位置。选择合适的工具:不同的自动化工具具有不同的功能和优势,要根据具体需求选择最适合的工具。影刀的AI功能为连点器的实现提供了强大的支持。不断优化。

2025-05-18 23:40:50 594

原创 如何提升大模型的智能水平?

随着人工智能技术的飞速发展,大模型在多个领域展现出了前所未有的能力,但它们仍然面临着理解力、泛化能力和适应性等方面的挑战。那么,如何让大模型变得更聪明呢?以下从算法创新、数据质量与多样性、模型架构优化等方向进行详细阐述。

2025-05-18 23:24:22 679

原创 大模型综述来了!一文带你理清全球AI巨头的大模型进化史

大模型必然是未来很长一段时间我们工作生活的一部分,而对于这样一个与我们生活高度同频互动的“大家伙”,除了性能、效率、成本等问题外,大规模语言模型的安全问题几乎是大模型所面对的所有挑战之中的重中之重,机器幻觉是大模型目前还没有极佳解决方案的主要问题,大模型输出的有偏差或有害的幻觉将会对使用者造成严重后果。同时,随着 LLMs 的“公信度”越来越高,用户可能会过度依赖 LLMs 并相信它们能够提供准确的信息,这点可以预见的趋势增加了大模型的安全风险。除了误导性信息外,

2025-05-18 23:20:35 703

原创 大模型的几个关键认识——成本、网络效应、用户、竞争、基准、产品

随着大模型从技术竞赛阶段逐渐过渡到应用普及阶段,对于供给侧而言,抢占用户和规模化推广成为未来在大模型市场中占据一席之地的必经之路。而对于需求侧来说,在各家基础大模型能力和体验差异不大的前提下,投入产出比与大模型推广息息相关。在这一背景下,在GPT-4o的发布会后,国内基础大模型厂商纷纷开始降价,第一轮价格战拉开帷幕。这种现象类似于云计算领域的竞争,亚马逊云自诞生以来已降价超过100次,不断降低用户使用云计算的成本,这也是云计算渗透率不断提升的关键。

2025-05-18 23:16:00 935

原创 大模型学习路线

LLMs更新至今,算是告一段落了。博主从零到一学习两月有余成功上岸心仪的LLMs、MLLMs算法岗。为工作、科研和职规需要,后续仍会保持AI全栈式的自我迭代。计划预跟进方向:NLP & MLLMs& CV,敬请期待…GPU:本地GPU,google的colab,kaggle的notebook,百度的飞桨平台,AutoDL的云端租赁。需要的朋友 点击下方👇👇👇【微信名片】,100%免费领取。

2025-05-18 23:11:13 1056

原创 多模态大模型:技术原理与实战 基于人工反馈的强化学习

近年来,随着互联网和移动设备的普及,多模态数据(如文本、图像、视频、音频等)呈爆炸式增长。如何有效地处理和理解这些多模态数据成为了人工智能领域的一个重要挑战。传统的单模态模型(如自然语言处理模型或计算机视觉模型)在处理多模态数据时往往会遇到瓶颈,难以充分利用不同模态之间的互补信息。MLLMs可以用于生成视频的摘要。例如,给定一段关于猫的视频,MLLM可以生成摘要 “这只猫很可爱,它喜欢玩玩具”。随着计算能力的提升,MLLMs的规模将会越来越大,从而学习到更丰富的语义表示。

2025-05-18 23:06:44 699

原创 解读大模型的微调

在快速发展的人工智能领域中,有效地利用大型语言模型(LLM)变得越来越重要。然而,有许多不同的方式可以使用大型语言模型,这可能会让我们感到困惑。实际上,可以使用预训练的大型语言模型进行新任务的上下文学习并进行微调。那么,什么是上下文学习?又如何对大模型进行微调呢?

2025-05-16 21:31:32 607

原创 深度解读:智能体2.0 AI Agent多推演进

Prompt模式就是把大模型当做工具来调用。大模型最初兴起时,Prompt工程把大模型当成一种编程语言来看待。人们通过描述角色技能、任务关键词、任务目标以及背景,来让大模型生成对应的文本格式Prompt工程的万能公式:角色+角色技能+任务核心关键词+任务目标+任务背景+任务范围+任务解决与否判定+任务条件+输出格式/输出数量。

2025-05-16 21:22:34 1015

原创 快手可图大模型Kolors全面开源——一个更懂中文的文生图大模型

这一系列开源项目的产生,将为开发者提供更加全面和多样化的工具和资源,进一步丰富文生图领域的开源生态,为探索更多的应用场景和技术创新提供便利,共同推动文生图技术的进步和普及。如图2所示,面对DALL-E 3的经典提示文本,使用GLM的模型能够正确绘制多主体(如小贩和女子),并且画面中包含了所有元素(如满月、电话等)。从图7中可以看出,可图(Kolors)在综合满意度达到Midjourney-v6水平,特别在图像质量上,可图(Kolors)对比目前开源和闭源模型优势显著,这与智源的评估结果一致。

2025-05-16 21:12:42 1112

原创 实战解析MCP-使用本地的Qwen-2.5模型-AI协议的未来?

近年来,随着大语言模型(LLM)在各类应用中的广泛使用,我们逐渐意识到:仅靠单一模型的能力,很难满足实际应用中对数据、工具、环境等多样化需求的不断增长。就在这种背景下,Anthropic 推出的模型上下文协议(Model Context Protocol,简称 MCP)悄然登场,它被誉为“为 AI 装上 USB-C 接口”的革命性标准,为 AI 工具整合带来了全新的思路。本文将深入探讨 MCP 是什么、为什么要使用 MCP,以及 MCP 与 LangChain 等其他技术的核心区别和应用前景。

2025-05-16 21:06:58 867

原创 大模型(LLMs)RAG 版面分析——表格识别方法篇

表格识别包括表格检测和表格结构识别两个子任务。表格定位(Table Localization):此阶段涉及识别并划定表格的整体边界,采用的技术手段包括但不限于目标检测算法,如YOLO、Faster RCNN或Mask RCNN,甚至有时借助生成对抗网络(GAN)来精确勾勒出表格的外在轮廓。本文介绍了大模型(LLMs)RAG 版面分析中的表格识别方法。首先,阐述了表格识别的重要性及其面临的挑战。接着,详细介绍了表格识别任务的两个子任务:表格检测和表格结构识别。

2025-05-16 20:59:50 986

原创 大模型的模型参数为什么这么多

随着参数数量的增加,模型能够学习到更为细致和深层次的特征表示,这对于处理复杂的自然语言、图像识别、音频处理、甚至是跨领域的多模态数据尤为重要。总之,大模型参数的增多是为了增强模型对复杂数据的表征能力和泛化能力,尤其是在现代深度学习和大规模数据环境下,这是提高模型性能和解决复杂任务的关键途径之一。: 尽管增加参数可能会带来过拟合的风险,但如果配合恰当的正则化技术(如权重衰减、Dropout、早停等)和足够大的训练数据集,大模型可以展现出更强的泛化能力,即在未见过的数据上表现良好。

2025-05-16 20:55:22 247

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除