一文读懂 AI

  • 2022年11月30日,OpenAI发布了ChatGPT,2023年3月15日,GPT-4引发全球轰动,让世界上很多人认识了ai这个词。如今已过去快两年半,AI产品层出不穷,如GPT-4、DeepSeek、Cursor、自动驾驶等,但很多人仍对AI知之甚少,尤其是“NLP”,“大模型”、“机器学习”和“深度学习”等术语让人困惑??。
  • 对于普通人来说,AI是否会取代工作???网络上说除双一流以外学校搞不了AI又是什么情况???AI产业是否像以前一样互联网程序员一样?看一些科普视频,上来就是一顿“Attention”、“神经元”、“涌现现象”等术语,让人感觉是在介绍AI某个领域中的一个名词,本文将通俗易懂地解释AI,让什么都不懂的小白也能变成AI概念的糕手,糕手,糕糕手??

一:区分AI技术与AI应用

image-20250412213505504

神经网络是机器学习的一部分,这里作例子

  • AI 的应用有:自然语言处理(NLP)、计算机视觉、自动驾驶、语音识别等。而机器学习、大语言模型等是实现这些应用的技术手段。

  • AI 的应用 就像是 餐馆的菜单,上面有不同的菜肴(如自然语言处理、计算机视觉等),这些菜肴是顾客需要的服务或产品。

    而 **机器学习、大模型就像是 厨师的烹饪方法和工具,它们是实现这些菜肴所用的手段。**你可以用机器来完成 NLP 任务,也可以用神经网做。

二:ChatGPT、DeepSeek是什么东西?

  • 我们已经知道AI有不同的应用,而ChatGPT与DeepSeek都是NLP领域的大型语言模型(Large Language Model, LLM)。(NLP中文意思:自然语言处理。不要忘了哦)

  • 这又引出了新问题:NLP是什么?大型语言模型又是什么?

NLP是什么?
  • 翻译人类语言让计算机听懂就是NLP,其中重点是听懂,而不是你说“吃饭了嘛”,计算机也说“吃饭了嘛”。计算机明白了你在问它吃没吃饭,于是计算机回答:我是机器不需要吃饭??,或者我打算过一会儿再吃(充电)??。

    很难想象,没思想的计算机怎么能听懂有思想的人说的话??,这其实是个困扰了几十年的问题。

阶段

时间范围

技术特点

代表方法/模型

应用举例

规则驱动阶段

1950s–1980s

基于人工编写规则,语言学为主

句法规则、词典匹配

早期机器翻译、图灵测试

统计学习阶段

1990s–2010

依赖大规模语料,采用统计与概率模型

N-gram、HMM、CRF

情感分析、搜索引擎、拼写纠正

神经网络阶段

2010–2017

引入深度学习,提升语言理解建模能力

Word2Vec、RNN、LSTM、Seq2Seq

智能问答、语音识别

预训练大模型阶段

2018至今

采用Transformer架构,模型参数大规模增长

BERT、GPT、T5、ChatGPT、DeepSeek等

多任务通用语言处理、对话系统

上面这表AI做的,时间范围可能有问题,但阶段没问题

  • 规则驱动阶段:意思就是让机器明白主谓宾定状补、什么名词动词名词短语……但很显然,套一万个规则也难以让一台只会010101的机器明白你在说什么。

  • 统计学习阶段:这时候,科学家们将统计学引入来解决问题。将人们日常对话收集成库(语料库),通过统计发现对话数据中的规律来实现计算机“理解”人说的话。

    • 在第三小结,会构建一个简单的N-Gram模型,让你大概知道什么是模型与统计学习阶段是在干什么。所以先别急。
  • 神经网络阶段:科学家们发现统计效果很好后,扩大了语料库,加入了矩阵、向量计算(这不是本文重点,但可以是下一篇)和人工设计特征(早期有,后期减少),计算机硬件发展为该阶段的提供算力支持。

  • 预训练大模型阶段

    • 先说大模型,大模型就是有参数量大(亿级甚至千亿级)、数据量大、算力需求高特点的神经网络模型。
    • 预训练:就像是一个体育比赛的人,不管这个人参与什么体育项目,先把体能练好了,再训练具体项目。

阶段

目的

数据类型

示例任务

预训练

学通用语言能力

无标注语料

预测遮盖词、下一个词等

微调

学任务特定能力

有标注数据

分类、翻译、问答等

image-20250413162855671

大型语言模型是什么?
  • 你应该已经知道了,大型语言模型是一种大模型。

三:一个基础NLP模型实现:N-Gram模型

  • -Gram 模型是一种基于统计的语言模型,其核心思想是:一个词(或字)出现的概率,只依赖于它前面的 n1n-1n1 个词(或字),用来解决已知的上下文生成合理的文本问题。

  • 工作原理:

    • 将文本序列拆分为连续的 N 个词(或字)的组合,称为“N-Gram”。
    • 通过统计语料中各个 N-Gram 出现的频率,估计下一个词(或字)出现的概率。
  • 计算公式

    • image-20250413174639644
  • 模型流程

    • 收集语料
    • 切分为 N-Gram
    • 统计每种 N-Gram 出现频率
    • 根据频率计算概率
    • 根据历史词语预测下一个词

    from collections import defaultdict, Counter
    import random

    第一步:创建语料库

    corpus = [
    “我早上去了图书馆”,
    “我早上听了一节英语课”,
    “我中午看了一部电影”,
    “我中午睡了一会儿”,
    “我晚上写了一篇作文”,
    “我晚上复习了功课”,
    ]

    第二步:分词函数(按字分词,这里只是按照字符分词)

    def split_words(text):
    return [char for char in text]

    第三步:统计Bigram词频(Bigram 是一个N-Gram 模型中的特例,其中N=2,即考虑连续的两个词或字符的组合。)

    bigram_freq = defaultdict(Counter)
    for sentence in corpus:
    words = split_words(sentence)
    for i in range(len(words) - 1):
    first, second = words[i], words[i+1]
    bigram_freq[first][second] += 1

    打印词频率

    print(“打印词频率”)

    for first, counter in bigram_freq.items():

    freq_list = [f"{second}:{freq}" for second, freq in counter.items()]

    print(f"{first}: [{', '.join(freq_list)}]")

    第四步:计算Bigram概率(转为概率分布)

    bigram_prob = {}
    for first, counter in bigram_freq.items():
    total = sum(counter.values())
    bigram_prob[first] = {second: count / total for second, count in counter.items()}

    print(“词频概率为:”, bigram_prob)

    第五步:根据前缀生成下一个字

    def predict_next_char(prev_char):
    if prev_char not in bigram_prob:
    return None
    candidates = list(bigram_prob[prev_char].items())
    chars, probs = zip(*candidates)
    return random.choices(chars, probs)[0]

    第六步:输入前缀,生成文本

    def generate_text(start_char, length=10):
    result = [start_char]
    current = start_char
    for _ in range(length - 1):
    next_char = predict_next_char(current)
    if not next_char:
    break
    result.append(next_char)
    current = next_char
    return ‘’.join(result)

    示例

    print(generate_text(“我”))

  • 代码不难,不懂问AI就好了。

  • https://github.com//HelloAI ,这里会陆续复现几个ai发展的经典模型
    image-20250413173945647

每个词后面出现词次数

image-20250413174052485

出现词次数转化为概率与给定一个词后生成的连续文本

  • 可以看到,出现了我早晨去了功课这样不存在词库的句子
  • 实际要做的更多

尾与推荐

  • N-Gram模型是不是让你觉得非常简单?简单就对了,**这是1913年提出的模型,在1950年被引入NLP。**而现在是2025年,AI已经过Word2Vec 、RNN、 HMM、Transformer、BERT、GPT……等模型,且上面这些只是AI中NLP领域的。

  • 推荐:

  • 本文的一些术语并列,因根据我日常看到的词频率而并列,可能其并非并列关系。

img

【CSDN大礼包】最新AI大模型资源包,这里全都有!无偿分享!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值