LangChain基础篇 (01)

LangChain 是什么

3597553-20250203113452442-1263058170

Langchain 是一个开源框架,它允许开发人员将大型语言模型与外部的计算和数据源结合起来,是一个通过组合模块和能力抽象来扩展 LLM 的助手

为什么需要 LangChain

  1. 增强语言模型的功能: LangChain 提供了可以将语言模型与各种数据源(如数据库、WebAPI、文档、搜索引擎等)连接的工具,使得语言模型能够在处理复杂任务时提供更丰富的回答。

  2. 流水线(Pipelines)支持: LangChain 允许构建复杂的“流水线”,即多个步骤的组合。例如,开发者可以设计一个任务,在多个步骤中使用不同的语言模型和数据源。这对于处理多阶段推理或需要上下文依赖的任务非常有用。

  3. 与外部工具的集成: LangChain 支持与其他外部服务和工具的集成,如数据库、搜索引擎、API等。这使得它特别适合构建需要动态获取外部数据、并基于这些数据生成响应的应用。

  4. 聊天和对话管理: LangChain 提供了内建的对话管理功能,能够追踪对话上下文,处理多轮对话,以及确保对话的连贯性。这对于构建对话型应用,如聊天机器人、虚拟助手等非常重要。

  5. 分布式和并行计算: 对于大型任务或高并发应用,LangChain 提供了并行处理和分布式计算的能力,这能够有效提升处理速度和效率。

  6. 自动化任务和工作流: 通过 LangChain,开发者可以构建自动化的工作流(如数据抓取、文本生成等),这些任务可以被组合成复杂的应用。

LangChain 典型使用场景

Langchain 的应用场景非常广泛,包括但不限于:

个人助手:可以帮助预订航班、转账、缴税等。

学习辅助:可以参考整个课程大纲,帮助你更快地学习材料。

数据分析和数据科学:连接到公司的客户数据或市场数据,极大地促进数据分析的进展。

总之,Langchain 打开了一个充满可能性的新世界,让AI技术更加贴近我们的实际需求和数据,使得机器学习应用的发展更加多样化和个性化。

LangChain 基础概念与模块化设计

3597553-20250203113718492-815855621

LangChain 核心模块

标准化的大模型抽象:Model I/O

3597553-20250203154323205-588027631

- Model I/O 是 LangChain 为开发者提供的一套面向 LLM 的标准化模型接口,包括模型本身(Models),模型输入(Prompts)和模型输出(Output Parsers)。

模型:Models

- 语言模型(LLMs): LangChain 的核心组件。LangChain并不提供自己的LLMs,而是为与许多不同的LLMs(OpenAI、Cohere、Hugging Face等)进行交互提供了一个标准接口。
  - 聊天模型(Chat Models): 语言模型的一种变体。虽然聊天模型在内部使用了语言模型,但它们提供的接口略有不同。与其暴露一个“输入文本,输出文本”的API不同,它们提供了一个以“聊天消息”作为输入和输出的接口。

语言模型(LLMs)

类继承关系:
    BaseLanguageModel --> BaseLLM --> LLM --> <name>  # Examples: HuggingFaceHub, OpenAI  

BaseLanguageModel Class (所有语言模型的封装器都应从 BaseLanguageModel 继承。)

# 定义 BaseLanguageModel 抽象基类,它从 Serializable, Runnable 和 ABC 继承
class BaseLanguageModel(
    Serializable, Runnable[LanguageModelInput, LanguageModelOutput], ABC
):

这个基类为语言模型定义了一个接口,该接口允许用户以不同的方式与模型交互(例如通过提示或消息)。generate_prompt 是其中的一个主要方法,它接受一系列提示,并返回模型的生成结果。

主要提供三种方法 (每种方法都有对应的异步方法):
  -  generate_prompt: 为一系列的提示值生成语言模型输出。提示值是可以转换为任何语言模型输入格式的模型输入(如字符串或消息)。
  -  predict: 将单个字符串传递给语言模型并返回字符串预测。
  - predict_messages: 将一系列 BaseMessages(对应于单个模型调用)传递给语言模型,并返回 BaseMessage 预测。

# 定义一个抽象方法 generate_prompt,需要子类进行实现
@abstractmethod
    def generate_prompt(
        self,
        prompts: List[PromptValue],  # 输入提示的列表
        stop: Optional[List[str]] = None,  # 生成时的停止词列表
        callbacks: Callbacks = None,  # 回调,用于执行例如日志记录或流式处理的额外功能
        **kwargs: Any,  # 任意的额外关键字参数,通常会传递给模型提供者的 API 调用
    ) -> LLMResult:

使用此方法时:
   1. 希望利用批处理调用,
   2. 需要从模型中获取的输出不仅仅是最顶部生成的值,
   3. 构建与底层语言模型类型无关的链(例如,纯文本完成模型与聊天模型)。
      参数:
      prompts: 提示值的列表。提示值是一个可以转换为与任何语言模型匹配的格式的对象(对于纯文本生成模型为字符串,对于聊天模型为 BaseMessages)。
      stop: 生成时使用的停止词。模型输出在这些子字符串的首次出现处截断。
      callbacks: 要传递的回调。用于执行额外功能,例如在生成过程中进行日志记录或流式处理。
      kwargs: 任意的额外关键字参数。通常这些会传递给模型提供者的 API 调用。
      返回值: LLMResult,它包含每个输入提示的候选生成列表以及特定于模型提供者的额外输出。

BaseLLM Class

# 定义 BaseLLM 抽象基类,它从 BaseLanguageModel[str] 和 ABC(Abstract Base Class)继承
class BaseLLM(BaseLanguageModel[str], ABC):
    """Base LLM abstract interface.
    
    It should take in a prompt and return a string."""

    # 定义可选的缓存属性,其初始值为 None
    cache: Optional[bool] = None

    # 定义 verbose 属性,该属性决定是否打印响应文本
    # 默认值使用 _get_verbosity 函数的结果
    verbose: bool = Field(default_factory=_get_verbosity)
    """Whether to print out response text."""

    # 定义 callbacks 属性,其初始值为 None,并从序列化中排除
    callbacks: Callbacks = Field(default=None, exclude=True)

    # 定义 callback_manager 属性,其初始值为 None,并从序列化中排除
    callback_manager: Optional[BaseCallbackManager] = Field(default=None, exclude=True)

    # 定义 tags 属性,这些标签会被添加到运行追踪中,其初始值为 None,并从序列化中排除
    tags: Optional[List[str]] = Field(default=None, exclude=True)
    """Tags to add to the run trace."""

    # 定义 metadata 属性,这些元数据会被添加到运行追踪中,其初始值为 None,并从序列化中排除
    metadata: Optional[Dict[str, Any]] = Field(default=None, exclude=True)
    """Metadata to add to the run trace."""

    # 内部类定义了这个 pydantic 对象的配置
    class Config:
        """Configuration for this pydantic object."""

        # 允许使用任意类型
        arbitrary_types_allowed = True

这段代码定义了一个名为 BaseLLM 的抽象基类。这个基类的主要目的是提供一个基本的接口来处理大型语言模型 (LLM),使用了 Pydantic 的功能,特别是 Field 方法,用于定义默认值和序列化行为。BaseLLM 的子类需要提供实现具体功能的方法。

LLM Class

# 继承自 BaseLLM 的 LLM 类
class LLM(BaseLLM):
    """Base LLM abstract class.

    The purpose of this class is to expose a simpler interface for working
    with LLMs, rather than expect the user to implement the full _generate method.
    """

    
<think>好的,用户想了解关于LangChain4j的使用心得和实践经验。首先,我需要确认用户的需求,他们可能是在开发中使用Java,并且对LangChain的Java版本感兴趣。用户可能已经有一定的经验,但希望分享或获取更多的实践技巧。 首先,我应该回顾已有的引用内容。引用[1]提到LangChain的活跃社区,引用[2]展示了如何用LangChain生成Python代码,引用[3]涉及配置Google API和安装库。但用户的问题是关于LangChain4j,即Java版本,而引用中的例子都是Python的。所以可能需要调整回答,强调Java相关的实践,同时结合用户提供的引用内容中的通用建议,比如社区参与和自动化生成的优势。 接下来,我需要构建一个结构清晰的回答。用户希望实践经验,所以分点回答比较合适。可能需要包括基础配置、文档处理、链式调用、本地模型集成、社区交流等。同时,要确保符合用户提到的格式要求,比如行内数学公式用$...$,独立公式用$$...$$,但这个问题可能涉及较少数学内容,不过如果有相关部分需要注意。 另外,用户要求生成相关问题,所以需要准备几个相关的问题,比如性能优化、与Python版的差异、扩展功能等。需要确保问题与用户的使用场景相关,并且能引导进一步探讨。 需要注意的是,用户提供的引用中没有直接提到LangChain4j的具体内容,所以回答可能需要更通用地结合Java生态的经验,同时参考引用中的社区和自动化优势。例如,可以提到利用LangChain4j的模块化设计,或者与Spring框架集成等实践。 最后,确保回答使用中文,语法正确,引用标识自然添加在相关段落末尾。可能需要将引用[1]关于社区的部分放在讨论交流的地方,引用[2]关于代码生成的部分可以类比到Java中的实践,引用[3]关于配置的部分可以提到类似的依赖管理步骤。 总结步骤: 1. 分点介绍LangChain4j的使用心得,如基础配置、文档处理、链式调用等。 2. 结合用户提供的引用内容,强调社区参与和自动化优势。 3. 生成相关问题,帮助用户深入探索。 4. 确保格式符合要求,正确使用引用标识。</think>### LangChain4j 使用心得与实践经验 LangChain4j 是 LangChain 的 Java 版本,专为 Java 开发者设计,提供便捷的 AI 应用开发工具链。以下是一些实践经验和心得: #### 1. **基础配置与依赖管理** - **依赖安装**:通过 Maven 或 Gradle 引入 LangChain4j 库。例如,使用 Maven 时需添加最新版本依赖: ```xml <dependency> <groupId>dev.langchain4j</groupId> <artifactId>langchain4j-core</artifactId> <version>0.27.0</version> </dependency> ``` - **API 密钥配置**:与 Python 版类似,需配置第三方服务(如 OpenAI 或 Google AI)的 API 密钥。例如,使用环境变量或配置文件管理密钥,确保安全性[^3]。 #### 2. **文档处理与向量化** - **文本分块**:使用 `DocumentSplitter` 将长文本分割为片段,便于后续向量化存储。例如,按固定大小或语义段落分割。 - **向量数据库集成**:结合 Elasticsearch 或本地向量库(如 Lucene),实现高效的语义搜索。示例代码: ```java EmbeddingStore<TextSegment> store = new InMemoryEmbeddingStore<>(); EmbeddingModel model = new OpenAIEmbeddingModel("sk-..."); ``` #### 3. **链式调用与模块化设计** - **构建处理链**:通过 `ChainBuilder` 定义任务流程,例如“文本摘要→情感分析→结果存储”。模块化设计便于复用和调试。 - **自定义工具扩展**:继承 `Tool` 接口实现业务逻辑,例如调用内部 API 或数据库查询。 #### 4. **本地模型集成** - **HuggingFace 模型本地部署**:通过 `LocalAiChatModel` 加载本地模型文件(如 GPT-2),减少云服务依赖: ```java ChatModel model = LocalAiChatModel.builder() .baseUrl("http://localhost:8080") .modelName("gpt-2") .build(); ``` #### 5. **调试与性能优化** - **日志记录**:启用 LangChain4j 的详细日志,分析链式调用中各步骤耗时。 - **缓存机制**:对频繁调用的模型结果(如 Embedding)进行缓存,减少重复计算。 #### 6. **社区交流与资源** - **参与社区**:LangChain 拥有活跃的开发者社区,可分享 Java 版实践案例或学习他人经验[^1]。 - **文档与示例**:参考官方 GitHub 仓库的单元测试代码,快速掌握 API 用法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值