小红书爆量新逻辑:AI流量智能体+DeepSeek+Coze,一天干出100+爆款笔记!

最近做了一个很“狠”的实验——用 DeepSeek + Coze,打造了一个可以批量生成小红书爆款视频笔记的AI智能体

一天产出100+条爆款内容完全没问题,甚至可以轻松扩展到1000+!

👇 效果图先睹为快:

img

这篇文章,是我详细复盘全过程的实操记录,包含思维导图、提示词设计、Coze流程编排、爆款风格分析等干货内容,强烈建议收藏!

如果你也在运营小红书、做内容副业、研究AI变现,这篇文章可能会打开你的全新思路。

用DeepSeek梳理从起号到变现的全流程

做项目不能拍脑袋,先要判断值不值得做。所以我先问DeepSeek一个灵魂问题:

“我想要做一个小红书书单号,请帮我梳理一下从起号到变现的逻辑,结合市场情况帮我做详细的定位拆解,输出成表格。”

结果,DeepSeek瞬间给我输出了一整套“内容创业策划案”:

一、从起号到变现的核心逻辑流程图

图片

二、目标群体与内容/视觉/音乐风格匹配表

图片

三、爆款内容风格与平台算法适配指南

图片

我结合这些分析,快速锁定了我的账号定位:
📌 目标人群:女性为主
📌 内容方向:个人成长 / 职场技能 / 治愈系书单
📌 视觉风格:极简清新、有情绪氛围、字幕+封面吸睛

智能体构建逻辑梳理(Coze + DeepSeek)

有了思路之后,接下来就是怎么把“想法”变成“自动生产力”。于是,我开始用Coze来搭建整个爆款笔记生成流程。

👇这是我梳理的智能体工作流设计图:

图片

整个流程拆分为以下几步:

  1. 用户输入关键词(如“自律类书籍”、“情绪管理”、“30岁后必须读的书”)
  2. DeepSeek生成书单内容+简介+金句
  3. 自动调用风格模版包装笔记结构(带有钩子句、共鸣点、行动号召)
  4. 生成视频脚本+字幕+标题+封面文案
  5. (可选)调用文本转语音或配图模型,直接生成视频
  6. 整理成批量发布素材包

img

img

img

img

图片

img

img

img

img

img

img

img

提升爆款概率的几个关键细节

📌 关键词选择要垂直细分
如“适合女生看的疗愈书”“30岁女性的转折之书”“提升表达力的职场读物”,别太泛。

📌 金句不能套话,要有情绪锚点
比起“这本书很励志”,说“看到这一段时,我一个人坐在出租屋的角落,哭了一晚上”效果更强。

📌 结构要固定、风格要统一
统一的模版 + 多样的内容,是批量生产的关键。

📌 不要急着发视频,先打10组内容进行A/B测试
观察哪些标题、哪些节奏能吸引更多用户。

进阶玩法:从单账号到内容矩阵复制

做完之后我发现,其实这套模型不仅能做书单:

  • 情感类账号(情绪共鸣型)

  • 职场成长账号(工具+心法结合)

  • 知识卡片号(适合投放、也适合做SEO内容池)

都可以用这套结构去跑。

图片

甚至你可以用 多种账号定位 + 多模版风格 + 多关键词主题,搭出一个内容矩阵型AI工厂

最后总结:这件事值得做吗?

如果你问我,这件事值得做吗?我会说:

绝对值得!

原因有三:

  1. 内容方向安全,长期主义
    不像搬运、跟风热点那么不稳定,书单类内容自带情绪价值和复购潜力。

  2. AI赋能内容生产效率成倍提升
    从选题 → 脚本 → 视频 → 发布,只需一人操盘。

  3. 流量模型可扩展、可复用、可变现
    带货书籍、知识星球、课程分销,甚至打造自己的IP,都有可能。

欢迎在评论区留言【智能体】,我把我的 Coze 流程分享给你~另外,如果你觉得这篇文章有价值,也欢迎顺手收藏起来慢慢搭建!

让我们一起用 AI,把内容创作变得又酷又赚钱吧!

关于AI大模型技术储备

学好 AI大模型 不论是就业还是在工作技能提升上都不错,但要学会 AI大模型 还是要有一个学习规划。最后大家分享一份全套的 AI大模型 学习资料,给那些想学习 AI大模型 的小伙伴们一点帮助!

感兴趣的小伙伴,赠送全套AI大模型学习资料和安装工具,包含Agent行业报告、精品AI大模型学习书籍手册、视频教程、最新实战学习等录播视频,具体看下方。

需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

一、大模型风口已至:月薪30K+的AI岗正在批量诞生

在这里插入图片描述

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K(数据来源:BOSS直聘报告)

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

二、如何学习大模型 AI ?

🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

<think>我们参考了用户提供的引用资料,特别是引用[2]中提到的Coze平台和DeepSeek大模型的使用流程。用户的问题是如何使用CozeDeepSeek搭建并测试AI智能体的工作流。根据引用资料,我们可以总结出以下步骤: 1. 在Coze平台上创建智能体项目。 2. 选择DeepSeek-R1作为大模型。 3. 编写提示词(Prompt)来定义智能体的行为。 4. 配置工作流(如果需要处理复杂任务)。 5. 测试和发布智能体。 具体步骤: ### 1. 创建Coze项目 首先,访问Coze平台(coze.cn)并登录。创建一个智能体项目。 ### 2. 选择模型 在智能体设置中,选择模型为DeepSeek-R1(或根据需求选择其他模型)。引用[3]中提到了使用DeepSeek-R1模型,并在系统提示词中填写具体的任务要求。 ### 3. 编写提示词 在智能体的系统提示词(Prompt)区域,编写清晰的指令来定义智能体的行为。引用[4]强调提示词的重要性,它需要明确告诉智能体如何工作,调用什么工具,使用什么语气等。例如: ``` 你是一个数码3C销售助手,负责回答用户关于数码产品的问题。请根据用户的问题,调用相应的工具(如产品查询工具)来获取信息,并以专业且友好的语气回答用户。 ``` ### 4. 配置工作流(可选) 如果任务需要多个步骤,可以配置工作流。工作流由多个节点组成,每个节点可以是一个工具调用、条件判断或数据处理步骤。引用[4]提到可以在提示词中使用{}来指定工作流,使用""来指定变。例如: ``` {工作流名称} "参数1" "参数2" ``` ### 5. 测试智能体Coze平台提供的测试窗口中,输入问题测试智能体的响应。观察是否按照预期执行工作流和调用工具。 ### 6. 发布智能体 测试通过后,可以将智能体发布到需要的平台(如微信、飞等)或通过API集成到业务系统中。 §§相关问题§§ 1. 如何优化Coze智能体的提示词以提高准确性? 2. Coze平台支持哪些大模型? 3. 在Coze中如何调试工作流?</think>### 如何使用CozeDeepSeek搭建并测试AI智能体工作流 以下是基于引用资料的详细搭建流程: #### 一、环境准备 1. **访问平台** - DeepSeek入口:[DeepSeek | 深度求索](https://www.deepseek.com) - Coze平台:[扣子(Coze)](https://www.coze.cn) [^1][^2] 2. **账号注册** 使用相同账号登录两个平台,确保无缝衔接。 --- #### 二、搭建智能体工作流 1. **创建Coze智能体** - 在Coze控制台点击「创建Bot」 - 命名智能体(如"数码3C销售助手") [^4] 2. **配置核心参数** ```markdown | 配置项 | 说明 | |-------------|----------------------------------------------------------------------| | 模型选择 | DeepSeek-R1(必选)[^3] | | 人设描述 | 明确角色定位(如"专业数码顾问") | | 工作流定义 | 用`{}`声明工作流名称,`""`定义变(如`{产品查询} "手机型号"`)[^4] | ``` 3. **编写系统提示词(关键步骤)** 使用DeepSeek生成高质提示词: ```python # DeepSeek输入示例 请生成智能体提示词,要求: - 角色:数码3C销售助手 - 功能:产品推荐、参数对比、促销通知 - 工作流:{产品查询}、{库存检查} - 语气:专业且友好 ``` 将DeepSeek生成的提示词粘贴到Coze的「系统提示词」区域[^1][^3]。 4. **配置插件/工作流** - 在Coze的「插件」模块添加: - 数据库连接器(查询产品库) - API工具(调用库存系统) - 使用可视化编排工具关联工作流节点[^2][^4] --- #### 三、测试与优化 1. **沙盒测试** - 在Coze控制台打开「测试面板」 - 输入测试用例: ``` 用户:iPhone 15的续航比三星S24好吗? 预期行为:调用{参数对比}工作流,返回表格数据 ``` 2. **调试技巧** - **问题定位**:检查工作流节点执行日志 - **提示词优化**:若返回结果不准确,返回DeepSeek迭代提示词 - **变验证**:确保`""`定义的变能被正确解析[^4] 3. **发布验证** 通过Coze智能体发布到: - 飞/微信群 - Web API(Postman测试) [^2] --- #### 四、典型问题解决方案 | 问题现象 | 解决方法 | |------------------------|-----------------------------| | 工作流未触发 | 检查`{}`声明是否在提示词首行 | | 变解析失败 | 确认`""`包裹的变名无空格 | | 插件返回超时 | 在Coze中调整API超时阈值 | | 回答偏离预期 | 用DeepSeek强化角色约束描述 | > **关键提示**:智能体性能的70%取决于提示词质,务必通过DeepSeek反复优化系统提示词[^1][^4]。测试阶段建议先用简单用例验证核心工作流,再扩展复杂场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值