Python爬虫所需的技术及其原理(简单易懂)


包含编程资料、学习路线图、源代码、软件安装包等!【[点击这里]】!

导言

  • 随着互联网的发展,大量的数据被存储在网络上,而我们需要从中获取有用的信息。Python作为一种功能强大且易于学习的编程语言,被广泛用于网络爬虫的开发。本文将详细介绍Python爬虫所需的技术及其原理,并提供相关的代码案例。
1. HTTP请求与响应
  • 当然,我可以用Python的requests库来演示HTTP请求与响应的详细过程。requests库是Python中用于发送HTTP请求的第三方库,它简化了HTTP请求的发送和响应的接收过程。
  • 首先,确保你已经安装了requests库。如果还没有安装,可以通过pip安装:
pip install requests
  • 当然,以下是一个简单的Python爬虫代码示例,我将从HTTP请求与响应的角度详细讲解其背后的技术和原理。

Python爬虫代码示例

import requests
from bs4 import BeautifulSoup

# 目标URL
url = 'https://example.com'

# 发送HTTP GET请求
response = requests.get(url)

# 检查请求是否成功
if response.status_code == 200:
    # 解析HTML内容
    soup = BeautifulSoup(response.content, 'html.parser')
    
    # 查找并提取所需信息,例如所有文章标题
    titles = soup.find_all('h2', class_='article-title')
    for title in titles:
        print(title.get_text())
else:
    print(f"请求失败,状态码:{response.status_code}")

从HTTP请求与响应角度讲解

1. 导入所需库
  • requests:用于发送HTTP请求。
  • BeautifulSoup:用于解析HTML内容。这里我们使用了bs4(BeautifulSoup 4)的别名。
2. 定义目标URL
  • url = 'https://example.com':这是我们想要爬取数据的网页地址。
3. 发送HTTP GET请求
  • response = requests.get(url):使用requests库的get方法发送一个GET请求到目标URL。这个请求会模拟浏览器访问该网页的行为。
4. 检查请求是否成功
  • if response.status_code == 200::HTTP状态码200表示请求成功,服务器返回了所请求的资源。如果状态码不是200,则可能表示请求失败或资源未找到。
5. 解析HTML内容
  • soup = BeautifulSoup(response.content, 'html.parser'):使用BeautifulSoup解析从服务器返回的HTML内容。response.content包含了原始的HTML字节数据,而'html.parser'是Python标准库中的HTML解析器。
6. 查找并提取所需信息
  • titles = soup.find_all('h2', class_='article-title'):使用BeautifulSoupfind_all方法查找所有<h2>标签,且这些标签的class属性值为article-title。这通常对应于网页上的文章标题。
    * for title in titles::遍历找到的所有标题。
    * print(title.get_text()):使用get_text方法提取每个标题的文本内容,并打印出来。

技术和原理总结

  • HTTP请求:使用requests库发送HTTP GET请求到目标URL,模拟浏览器访问网页。
  • HTTP响应:服务器返回HTTP响应,包含状态码、响应头和响应体(HTML内容)。
  • HTML解析:使用BeautifulSoup解析响应体中的HTML内容,提取所需的信息(如文章标题)。
  • 数据存储(可选):在本例中,我们直接打印了提取的信息。但在实际应用中,你可能会将数据存储到文件或数据库中。
2. 网页解析技术
  • 爬虫的网页解析技术主要涉及到从HTTP响应中提取并解析出所需数据的过程。这些技术通常依赖于一些库或框架来简化HTML、XML或JSON等格式的解析工作。在Python中,常用的网页解析库有BeautifulSouplxmlre(正则表达式)以及pandas(对于表格数据)等。下面,我将以BeautifulSoup为例,结合代码来详细讲解网页解析技术。
  • 从网页解析技术的角度讲解Python爬虫所需的技术及其原理,我们可以聚焦于如何从网页的HTML或XML内容中提取有用的信息。以下是一个基于Python的网页解析技术讲解,结合一个简单的爬虫代码示例。
Python爬虫网页解析技术讲解
1. 网页解析库
在Python中,有多种库可以用于解析网页内容,其中最常用的包括:
  • BeautifulSoup:这是一个非常流行的Python库,用于从HTML和XML文件中提取数据。它创建了一个解析树,从中可以提取和操纵数据。
  • lxml:这是一个基于C语言的库,用于处理XML和HTML。它比BeautifulSoup更快,但API可能不那么友好。
  • pyquery:这是一个类似于jQuery的库,允许你使用类似于CSS选择器的语法来查询HTML文档。
2. 解析原理
  • 网页解析的基本原理是将HTML或XML文档转换为一个树状结构(解析树),然后遍历这个树来查找和提取所需的信息。解析树中的每个节点都代表文档中的一个元素(如标签、文本节点等)。
3. 代码示例与讲解
  • 以下是一个使用BeautifulSoup解析网页内容的Python爬虫代码示例:
import requests
from bs4 import BeautifulSoup

# 目标URL
url = 'https://example.com/some-page'

# 发送HTTP GET请求
response = requests.get(url)

# 检查请求是否成功
if response.status_code == 200:
    # 解析HTML内容
    soup = BeautifulSoup(response.content, 'html.parser')
    
    # 查找所有具有特定class的div元素
    divs = soup.find_all('div', class_='specific-class')
    
    # 遍历找到的div元素,并提取其中的文本内容
    for div in divs:
        # 查找div内的h2标签,并提取其文本内容
        title = div.find('h2').get_text()
        # 查找div内的p标签,并提取其文本内容
        description = div.find('p').get_text()
        
        # 打印提取的信息
        print(f'Title: {title}')
        print(f'Description: {description}')
else:
    print(f"请求失败,状态码:{response.status_code}")
4. 解析技术细节
  • 创建解析树BeautifulSoup(response.content, 'html.parser')这行代码创建了一个解析树,其中response.content是服务器返回的HTML字节数据,'html.parser'是Python标准库中的HTML解析器。
  • 查找元素soup.find_all('div', class_='specific-class')这行代码查找所有<div>标签,且这些标签的class属性值为specific-classfind方法用于查找第一个匹配的元素,而find_all方法用于查找所有匹配的元素。
  • 提取文本get_text()方法用于提取元素内的文本内容,忽略HTML标签。
  • 遍历元素:通过for循环遍历找到的元素,并对每个元素执行相同的操作(如提取文本内容)。
技术和原理总结
  • 网页解析库:使用Python的网页解析库(如BeautifulSoup、lxml、pyquery)来解析HTML或XML内容。
  • 解析原理:将HTML或XML文档转换为一个树状结构(解析树),然后遍历这个树来查找和提取所需的信息。
  • 查找与提取:使用解析库提供的API来查找具有特定属性或标签的元素,并提取其文本内容或其他属性。
通过掌握这些网页解析技术,你可以构建强大的Python爬虫程序,从各种网页中提取有用的信息。这些技术不仅适用于简单的网页,还可以处理更复杂的网页结构,如嵌套的标签、动态加载的内容等。

3. 爬虫框架

  • 从爬虫框架的角度讲解Python爬虫所需的技术及其原理,我们可以聚焦于如何使用现有的爬虫框架来简化爬虫的开发过程,提高效率和可维护性。以下是一个基于Python爬虫框架(如Scrapy)的讲解,结合一个简单的代码示例。
3.1. 爬虫框架概述
爬虫框架是一组预定义的库和工具,旨在帮助开发者更容易地构建、运行和管理爬虫程序。它们通常提供了以下功能:
  • 请求与响应处理:简化HTTP请求的发送和响应的接收。
  • 网页解析:提供内置的解析器或与其他解析库(如BeautifulSoup、lxml)的集成。
  • 数据提取:通过选择器或XPath表达式从HTML/XML中提取数据。
  • 数据存储:支持将提取的数据存储到文件、数据库或其他存储系统中。
  • 调度与并发:管理多个爬虫的并发执行,优化资源使用。
  • 日志与监控:记录爬虫的运行日志,提供监控和调试功能。
3.2. Scrapy框架介绍
  • Scrapy是一个快速、高层次的Web抓取和网页抓取框架,用于抓取web站点并从页面中提取结构化的数据。它使用了Twisted异步网络框架来处理网络通信。
3.3. Scrapy爬虫代码示例与讲解
  • 以下是一个使用Scrapy框架的简单爬虫代码示例:
# 创建一个Scrapy项目(在命令行中运行):
# scrapy startproject myproject

# 在myproject/spiders目录下创建一个新的爬虫文件(如example_spider.py):

import scrapy

class ExampleSpider(scrapy.Spider):
    name = 'example'  # 爬虫的名称
    allowed_domains = ['example.com']  # 允许爬取的域名列表
    start_urls = ['https://example.com/some-page']  # 初始URL列表

    def parse(self, response):
        # 解析响应并提取数据
        titles = response.css('h2.article-title::text').getall()
        descriptions = response.css('p.article-description::text').getall()
        
        # 生成Item对象(用于存储提取的数据)
        for title, description in zip(titles, descriptions):
            yield {'title': title,'description': description}

        # 跟进其他页面(如果需要)
        # for href in response.css('a::attr(href)').getall():
        #     yield response.follow(href, self.parse_another_page)

# 运行爬虫(在命令行中运行):
# scrapy crawl example
3.4. Scrapy爬虫技术细节
  • 项目结构:Scrapy项目通常包含一个项目目录,其中包含爬虫文件、配置文件、中间件和管道等。
  • Spider类:每个爬虫都是一个继承自scrapy.Spider的类,定义了爬虫的名称、允许爬取的域名、初始URL列表以及解析响应的方法(如parse)。
  • 选择器:Scrapy提供了CSS选择器和XPath选择器来从HTML中提取数据。在上面的示例中,我们使用了CSS选择器来提取文章标题和描述。
  • Item对象:用于存储提取的数据。在上面的示例中,我们直接使用了字典,但在更复杂的场景中,可以定义Item类来结构化数据。
  • 跟进链接:Scrapy允许你跟进从当前页面提取的链接,并继续爬取其他页面。这通常通过response.follow方法或直接在yield语句中使用URL来实现。
  • 管道:用于处理提取的数据,如清洗、验证和存储。在上面的示例中,我们没有使用管道,但在实际应用中,管道是处理数据的关键部分。
技术和原理总结
  • 爬虫框架:使用现有的爬虫框架(如Scrapy)来简化爬虫的开发过程。
  • 选择器:使用CSS选择器和XPath选择器从HTML中提取数据。
  • Item对象:用于存储提取的数据,可以定义Item类来结构化数据。
  • 跟进链接:允许你跟进从当前页面提取的链接,并继续爬取其他页面。
  • 管道:处理提取的数据,如清洗、验证和存储。
通过掌握这些技术和原理,你可以使用Scrapy或其他爬虫框架来构建高效、可维护的Python爬虫程序。这些框架不仅提供了丰富的功能,还遵循了最佳实践,帮助你避免常见的错误和陷阱。
4. 实例:爬取简书网站文章信息
  • 为了更好地演示Python爬虫的技术和原理,我们选取了简书网站作为示例。我们将爬取简书网站中的热门文章列表,提取出每篇文章的标题、作者和链接。
  • 以下是完整的实现代码:
import requests  
from bs4 import BeautifulSoup  
  
\# 发送HTTP请求  
url = 'https://www.jianshu.com'  
response = requests.get(url)  
html = response.text  
  
\# 解析HTML内容  
soup = BeautifulSoup(html, 'html.parser')  
  
\# 提取数据  
articles = soup.select('.note-list li')  
  
data = \[\]  
for article in articles:  
    title = article.select('a.title')\[0\].string.strip()  
    author = article.select('.name')\[0\].string.strip()  
    href = 'https://www.jianshu.com' + article.select('a.title')\[0\]\['href'\]  
    data.append(\[title, author, href\])  
  
\# 数据存储  
import csv  
with open('jianshu\_articles.csv', 'w', newline\='', encoding\="utf-8") as file:  
    writer = csv.writer(file)  
    writer.writerows(data)
  • 在这个示例中,我们首先发送GET请求获取简书网站的HTML内容,然后使用BeautifulSoup库进行解析。
  • 接着,我们使用CSS选择器字符串.note-list li选取所有文章的外层容器,并使用CSS选择器和字典键值对的方式提取文章的标题、作者和链接。
  • 最后,我们采用CSV格式将提取的数据保存到了名为jianshu_articles.csv的文件中。
结语
  • 本文详细介绍了Python爬虫所需的技术及其原理,包括HTTP请求与响应、网页解析技术和爬虫框架。通过掌握这些技术,我们可以有效地开发出强大且高效的Python爬虫。希望本文能对你理解和掌握Python爬虫有所帮助。
    图片

总结

  • 最后希望你编程学习上不急不躁,按照计划有条不紊推进,把任何一件事做到极致,都是不容易的,加油,努力!相信自己!

文末福利

  • 最后这里免费分享给大家一份Python全套学习资料,希望能帮到那些不满现状,想提升自己却又没有方向的朋友,也可以和我一起来学习交流呀。
包含编程资料、学习路线图、源代码、软件安装包等!【[点击这里]】领取!
  • ① Python所有方向的学习路线图,清楚各个方向要学什么东西
  • ② 100多节Python课程视频,涵盖必备基础、爬虫和数据分析
  • ③ 100多个Python实战案例,学习不再是只会理论
  • ④ 华为出品独家Python漫画教程,手机也能学习

可以扫描下方二维码领取【保证100%免费在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值