从零理解 LangChain:让大模型“动”起来的开发框(下)

大家好!最近很多小伙伴问我:“大语言模型(LLM)很厉害,但怎么把它做成能实际用的工具呢?” 今天就来给大家介绍一个超好用的框架 ——LangChain。它就像 “大语言模型的乐高积木”,能帮我们轻松把 LLM 和各种工具、数据拼起来,做成各种实用应用。哪怕你是编程小白,跟着这篇文章一步步做,也能快速上手!

一、先搞懂:LangChain 到底是什么?

简单说,LangChain 是一个帮我们 “操控” 大语言模型的框架

平时我们用 ChatGPT,只能打字问问题,但如果想让模型做更复杂的事(比如:先分析用户评论,再翻译成英文,最后生成回复),就需要一步步 “串联” 起来。LangChain 的核心就是 “链(Chains)”—— 把大语言模型(LLM)和提示词(Prompt)、工具等组合起来,让它们按顺序完成任务。

打个比方:如果 LLM 是 “厨师”,提示词是 “菜谱”,那 “链” 就是 “做菜的步骤”—— 先切菜、再翻炒、最后装盘,一步步完成一道菜。

二、基础中的基础:大语言模型链(LLMChain)

LLMChain 是最简单的链,就像 “单步骤做菜”:把 “提示词模板” 和 “大语言模型” 绑在一起,输入内容就能直接出结果。

2.1 手把手实操:用 LLMChain 给产品起公司名

比如我们有个产品叫 “大号床单套装”,想让模型帮我们起个合适的公司名,步骤如下:

第一步:准备工作(导入工具)

首先要导入 LangChain 的相关工具,就像做菜前先把锅碗瓢盆摆出来:

import warnings
warnings.filterwarnings('ignore')  # 忽略一些不重要的警告

# 导入大语言模型、提示模板、LLMChain
from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
from langchain.chains import LLMChain
第二步:初始化大语言模型

选一个大语言模型(这里用 OpenAI 的模型),temperature参数控制生成结果的随机性(0.0 表示结果固定,1.0 表示更灵活):

llm = ChatOpenAI(temperature=0.0)  # 用OpenAI模型,固定结果
第三步:写提示词模板

告诉模型要做什么,用{product}表示 “要替换的产品名”(类似填空题):

prompt = ChatPromptTemplate.from_template(
    "描述制造{product}的一个公司的最佳名称是什么?"
)
第四步:构建 LLMChain

把模型和提示词模板 “绑” 在一起,形成一条链:

chain = LLMChain(llm=llm, prompt=prompt)  # 模型+提示词=链
第五步:运行链,看结果

输入产品名,让链工作:

product = "大号床单套装"
result = chain.run(product)  # 运行链
print(result)

输出结果(类似):

"豪华床纺"

是不是很简单?LLMChain 的核心就是 “输入→提示词格式化→模型输出”,一步到位。

三、多步骤任务:顺序链(SequentialChains)

如果任务需要多步完成(比如 “先起名,再写公司描述”),就需要顺序链—— 让多个 LLMChain 按顺序执行,上一步的输出作为下一步的输入。

3.1 简单顺序链(SimpleSequentialChain):单输入单输出

适合 “一步接一步” 的简单任务,比如:先给产品起公司名,再根据公司名写描述。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值