重要极限中的一种使用时注意事项

文章探讨了一个数列an+1=sinan(0<a1<π)的极限问题,指出常规解法的错误,并解释了当n趋向无穷或0时,1+的部分趋向于0而非1,因此不能直接应用特定极限定理。答案与常规解法不同,强调了解题时对极限行为的精确理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

gif.latex?%5Clim_%7Bn-%3E%5Cinfty%20%7D%281&plus;%5Cfrac%7B1%7D%7Bn%7D%29%5E%7Bn%7D

证明其存在极限:

6ed1e83317c142cf91283ed77a6110d5.jpeg

例题:

设 0 < a1 < Π, an+1 = sin an (n = 1,2,3...),且该数列存在极限,极小值为0.

gif.latex?%5Clim_%7Bn-%3E%5Cinfty%20%7D%28%5Cfrac%7B1%7D%7B%28an&plus;1%29%5E%7B2%7D%7D-%5Cfrac%7B1%7D%7B%28an&plus;1%29%5E%7B2%7D%7D%29

我习惯性的使用这个重要极限gif.latex?%5Clim_%7Bn-%3E%5Cinfty%20%7D%281&plus;%5Cfrac%7B1%7D%7Bn%7D%29%5E%7Bn%7D

 但是这个结果是错误的

35c68e4c50cd4d34bca074c121c6ad0e.jpeg

然而答案确是如此:

d491e7102d7846a5a3f9bde6be97b194.jpeg 

因为 gif.latex?%5Clim_%7Bn-%3E%5Cinfty%20%7D%281&plus;%5Cfrac%7B1%7D%7Bn%7D%29%5E%7Bn%7D

不管n是趋向无穷还是0,这个1+的这个部分都是趋向0的,而在我的解法中gif.latex?%5Cfrac%7Bt%5E%7B2%7D-sin%5E%7B2%7Dt-t%5E%7B2%7D*sin%5E%7B2%7Dt%7D%7Bt%5E%7B2%7D*sin%5E%7B2%7Dt%7D是趋向1的,所以根本就不能够使用该极限,所以会出现错误

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值