
机器学习
文章平均质量分 92
爱研究的小牛
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
深度学习YOLOV8模型如何训练建筑工地工程类桥梁/建筑/裂缝病害检测数据集的训练及应用
数据集描述:深度学习YOLOV8模型如何训练建筑工地工程类桥梁/建筑/裂缝病害检测数据集的训练及应用 建筑物损伤分割与检测数据集 建筑结构健康监测、城市基础设施巡检、AI辅助工程评估等方向的研究与应用。原创 2025-08-11 17:12:23 · 897 阅读 · 0 评论 -
FakeApp 技术浅析(四):卷积神经网络
FakeApp是一款利用深度学习技术进行视频换脸的应用程序,其核心在于卷积神经网络(CNN)强大的图像特征提取和生成能力。下面我将详细讲解CNN的基本原理、FakeApp中CNN的具体实现以及关键技术公式。原创 2025-03-16 21:25:49 · 857 阅读 · 0 评论 -
The Simulation技术浅析(六):机器学习
机器学习(Machine Learning)是模拟技术(The Simulation)的重要组成部分,通过从数据中自动学习规律和模式,机器学习能够提升模拟系统的智能化水平,增强其预测、决策和优化能力。原创 2025-02-10 23:20:29 · 307 阅读 · 0 评论 -
启元世界(Inspir.ai)技术浅析(三):模仿学习
启元世界(Inspir.ai) 的模仿学习技术(Imitation Learning)是一种通过模仿专家行为来训练智能体的方法,广泛应用于机器人控制、自动驾驶、游戏 AI 等领域。模仿学习技术主要包括 专家演示(Expert Demonstration)、行为克隆(Behavior Cloning) 和 逆强化学习(Inverse Reinforcement Learning,IRL)。专家演示是模仿学习的基础,通过收集专家的行为数据(如状态-动作对)来指导智能体的学习。专家演示的核心思想是通过记录专家在特原创 2025-02-04 16:37:33 · 413 阅读 · 0 评论 -
讯飞智作 AI 配音技术浅析(二):深度学习与神经网络
WaveNet是一种基于卷积神经网络的声码器,能够生成高保真度的语音波形。其主要优势在于能够捕捉语音中的细微变化,生成非常自然的语音。模型基于 Transformer 架构,利用自注意力机制(Self-Attention)捕捉文本与语音之间的长距离依赖关系,生成更加自然的语音。原创 2025-01-30 20:29:12 · 1750 阅读 · 0 评论 -
InVideo AI技术浅析(四):机器学习
视频剪辑与合成是视频编辑中的核心任务,旨在将多个视频片段、音频和字幕等元素组合成一个连贯且富有吸引力的视频。其核心目标是提升观众的观看体验,确保视频的节奏紧凑、内容连贯。音频处理是视频编辑中的重要组成部分,旨在提升音频的质量,确保音画同步,并添加合适的音效和背景音乐。在视频剪辑中,LSTM 可以用于捕捉视频的时间依赖关系,识别重要情节和过渡。WaveNet 是一种用于音频生成的深度学习模型,能够生成高质量的音频信号。在视频剪辑中,RL 可以用于学习最佳的剪辑策略,以最大化观众的观看体验。原创 2025-01-19 15:42:57 · 441 阅读 · 0 评论