用户反馈驱动的序列推荐反事实数据增强方法解析
1. 引言
在当今信息爆炸的时代,线上平台广泛普及,序列推荐任务对于提升用户满意度和平台效率至关重要。序列推荐旨在依据用户的历史交互行为,考虑行为的时间动态和顺序依赖关系,为用户提供个性化推荐。这一技术已成功应用于电商、新闻推荐和视频流等多个领域。
然而,数据稀疏问题是序列推荐任务面临的重大挑战之一。由于用户与物品的交互不足,难以构建准确的用户画像,这使得为用户(尤其是新用户或不活跃用户)提供个性化推荐变得困难。为解决这一问题,研究人员探索了多种数据增强技术,其中一些采用了反事实推理方法,试图通过反事实分析来模拟用户在不同场景下的行为。
但现有的反事实数据增强方法大多侧重于物品的属性信息,忽略了用户反馈这一影响推荐结果的重要因素。因此,本文提出了一种基于用户反馈的反事实数据增强方法(UFC4 - SRec),旨在通过关注用户对物品反馈变化后的推荐序列变化,生成多样化且准确的反事实数据。
本文的主要贡献如下:
- 提出了UFC4 - SRec方法,并设置了模仿强化学习的奖励值来引导反事实数据的生成。
- 在三个真实数据集上进行了广泛实验,验证了该方法在不同模型上的有效性。
2. 相关工作
为解决序列推荐任务中的数据稀疏问题,研究人员进行了多种尝试:
- Ni等人引入生成对抗网络,设计了序列增强模块和比较GAN模块,实现了数据级和模型级的增强。
- Li等人提出了基于注意力的序列到序列生成模型,通过使签到记录均匀分布来解决训练集稀疏问题。
反事实推理作为因果推理的重要方法,在数据增强方面具有独特优势,被广泛应用于数据